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FOREWORD

This collection contains articles
written by staff members of the depart-
ment of radio engineering fundamentals
and antenna feed installations of the
Radlo Engineering Division, Joscow Power
Institute, in 1971.

As to subject matter orientation, the
cecllection 1s divided into four parts.
Part 1 includes studies on problems of the
electrodynamics of inhomogeneous media.
Presented in Part 2 are articles in which
probvlems of the excitation and diffraction
of electromagnetic waves are examined.
Part 3 contains investigations on the re-
cording of electromagnetic radiation in the
microwave band. Part 4 considers problems
of the theory and application of dielectric
waveguides.

Because of the subject matter orilenta-
tion of the collection, the references cited
are general. In this collection, a three-
dlgit arrangement 1s used 1in citing articles.
Thus, in referring to article 7, the number
107 is given, and in citing article 23, the
number 123.

Much of the work involved in collecting
the artlcles and editing the collectlion was
done by candidate of technical sciences V. V.
Shtykov. Considerable work in the technical
preparation of the collection was performed
by degree-seeking student I. T. Krylova.

iv




ey

e A

PART 1
ELECTRODYNAMICS OF INHOMOGENEOQUS MEDIA
{

~—




DR S

SOLVING PULSED PROBLEMS OF ELECTRODYNAMICS IN INHOMOGENEQUS
MEDIA BY THE METHOD OF FINITE-DIFFERENCE NETS

Ye. A. Filatova

Modeling of Initial Equations in
the Case of Magnetic Type Waves

An examination is made of modeling with finite-difference
electrical nets of two-dimensional Maxwell operator equations
in spherical coordinates originating 1n cases when the con-
ductivity o(w) and the dielectric constant ea(w) of a plasma
medium vary with respect to radius and the angular coordinate 9.
Schemes of net models are presented in an investigation of
waves of the magnetic or electrical type.

When problems of the propagation of pulsed signals in
dispersive media are investlgated, the initial Maxwell equations
for instantaneous values are best represented in the form of
operator equations. In the case under study, this is a
system of scalar operator equations. Here the system of
scalar operator equations can be written in the followilng
form:

ity B LE,Psin 0] -ppH.(p),
FECrE AT ppHup,
# & LrHyal - 4 568 + p2,AE, (o) (1)
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where E,(p WH.(p)s H,(p ) are the component images of the
vectors of electromagnetic field

.fj intensity after Laplace
f e .(P)‘%@ is the complex dilelectric constant
i_% of a medium in operator form

The resulting operator equatlons are valid, assuming zero
initial conditions.

LIt Ly

The method of modeling operator equatlons consists of
writing the 1nitial-equations in the form of equations in
finite differences for a constant quantization step between
the nodes of a two-dimensional net mn and mn+l or mn-1 and
jft mn, respectively, for the step A8 between the nodes and mt+ln
b b or m-1n and mn. By introducing the constant modeling coeffi-
- clents kl’ k2’ and the followling notation:

ar

.LzLﬁlem
X rE o (o) $(né 'LL-m,G%
,Cré}{g)stJ@.q U

ﬁ.w(P)

ﬁiﬁﬂdﬂlﬁ;ﬂl Qhqua”
..L.nnm(&)_.
4 Y z-'m (P,

¥ Lr.[cé;(ezml.’.y__'(p,'

(2)

we can write Eq. (1) in finite differences in the form of the
following system:

Uﬂ'ﬂ@, -Um(P)..Pﬂqé ‘“"aw ‘;O.me (P)o A
Um (.P) reon (P) . -P/'. "" en-qc ar Jno- on (P)}

UereslP-Yon(p) s ppryor & sine,, -7....,. (P),

Untp-U.. w-pﬁ.ar:'v" 36y T (P)

jm... (P) mneq s (P) megqsn ( P) m-q!n (P)’ ( 3 )
“®p ....(p);;‘n; Y.
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The system of equations (1) can be reduced to operator equations
(8) of the voltage U(p) balance and of the current J (p) balance
in the node of the two-dimensional net. The two-port networks
of the model can be calculated with the following formulas:

o -

; , raet . (4)
' Znuqcn (P .PJ."‘% ::%g sme""" ’
2, (P o arsine, (5)
Vo) = PE (P R AR, (6)

A ; The model can be obtained if from the resulting equations (4),
j E (5), (6) the target 1s synthesized for the known law Ea(p).
‘ For the case of a plasma medium, the dielectric constant

ea(p) and the conductivity o(p) in operator form can be written
as follows:

g E(P) ¢ (1-400" 5% e, (7)
" G(P)'zo&'lo-ev—fs[: (8)

where ng is the electron concentration in the plasma
v 1is the effective rate of electron collisions in the

plasma, 1/s

By the synthesis of the two-port networks, the model dia-
gram as shown 1in Flg. 1 was obtained.

The model elements can be calculated with the formulas:

: . 2, 02
Ln!un ."%%—:‘imoﬂoul (9>
Loy Mo BrSin6,, - (10)
. x . .
CM. Goﬁf ﬁ.' (ll)
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(12)

(13)

Modeling Initilal Equations in the Case of Electric Type Waves

Operator Maxwell equations for this case can be written

in the following form:

Fiks 85 LHolp) sn6] = pZ, (). (p),
A& LrH, (o] = -pa(a)E, (p),
' l'é %[’Eo (Pg- ﬁ %Ei-g' .Pf'QH'I(P_)"

(14)

Modeling of system (14) is analogous to modeling of Egs. (1).

The model diagram is given in Fig. 2.

The model elements for

the case of a plasma medium can be calculated with the follow-

ing formulas:

Ko ar

Com M7, T

2, a2
K' [ A8 .
Lm:m' & Ke AP .so.ne,"“ ’

C - KQ 4 F
~tgsn K. e. 3, 79 ’OT".mtqm ’:,‘29‘5‘:0 Gmlv’

P =t 2 34910 gmisgn 105000,
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X ,
L - .e,;:or.sfne,, :

C - o Xe L4
mntgs N E 40910 Ny g "ﬂ "
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(19)
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(21)



In this diagram the ccmponents of the electromagnetic field

can be determined from the following relationships:

P [rHe(P)sin6lma o U.. (P), (22)

] ar

(23)
K. f'E A"mt -J”"‘(P)'
K, _EA"_’-AHGQ-@- = Jm:o,sn (P)’ (24)

where k3, ka are constant coefficilents of modeling.

The solution of the practical problems can be reduced to
setting up the diagram of the models according to Fig. 1, when
the required boundary conditions are satisfied [1].

The calculations and the experiments showed that 1t 1s
entirely possible to exactly synthesize the modeling diagrams
in the frequency band exceeding the band used in actual radio
_ Systems. The advantages of the modeling method consist of
the fact that in this case use‘'ls made only of quantization
along the coordinates along which the parameters of the medium
vary. In contrast to numerical methods, this method does not
require quantization with respect to frequency and to time.
The model is best constructed for a frequency distinct from
the working frequency of the pulse system. All elements of the
diagram and the pulse signals tested are recalculated to the
model frequency according to the principle of electrodynamic
similitude. The excitation condition 1s attained by connect-
ing a radio pulse generator to the corresponding node. When
the shape or duratlon of the radio pulse is varied, the model
elements remain unchanged. A pulse signal 1s observed in the
electrical circult, at different polnts in 1t corresponding to
certain spatial points of the electrodynamic problem.
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SOLUTION OF ONE-DIMENSIONAL PROBLEMS OF LONG-RANGE ELECTRODYNAMIC
PRCBLEMS BY METHOD OF MODELING ON MODELS WITH SHORT ELECTRICAL
LENGTH

I. I. Chugunov and L. P. Abasheyeva

e

When a plane eiectromagnetic wave is incident at an angle
$ on a plane inhomogeneous layer, the complex dielectric con-
stant being ﬁ-f;—j% and varyling alcng the coordinate z, de-
vending on the polarization, the process can be described with

either the equation

——

or the equation

G -8 G(E) Y +1mu o, (2)

where

$(2) = win €, CE) - sin*ed,

Using the discrete partitioning of the layer into m equal
parts Az, within whose limits the variation in the parameters
of the medium 1s insignificant, and by applying the principle
of electrodynamic similitude, let us model Eqs. (1) and (2)
(2].




By modeling the equations, we get the circult diagrams

shown in Filg. la and 1lb.

o For Eq. (1), Fig. la, given the values f(z)>0, and Fig. 1lb,
, given the values f(z)<0. In these diagrams, according to [1]

K.
T R japs.

cm . %ﬂ‘lé y.

2 et jw;’éaie.?,m’“ N
o jw a2 L(e ., - sin') - ; SBE-]

Hence we have

(3)

' or
¥
!
' Ke . .
Loias™ K088, (€m0~ Sin™Y), (4)
X,
Recas™ K. 826 nzee - (5)

For the case when (f,,,,“- sin*Y)¢o , the inductance L

m+0.5
can be replaced with the inductance Cm+0 5 determined with
the formula -
Coves® it
meas N w'ad & E, o - 5in'Y) (6)

In these circults the voltage at the nodes determine the
magnltude of the magnetic field intensity at the corresponding
points of the 1Inhomogeneous layer. The value of the current
7~,¢ determines the electric field intensity. By modeling
Eq. (2), we get circuits of the form shown in Fig. 1lb, for
£(z)>0, and Fig. 1ld, for the values f(z)<0.

As can be shown in Fig. lc and 14, in place of the con-

stant capacitance Cm in the parallel branch of the circuit
the parallel connection of capacltance Cm and reslistance Rm,
determined with the following formulas, now appear:




s e~

poA AR R el oo g e AP £ 4 5 o 5~ - . Sl duovign i e S - .

K, [e2F2)] ¢,
R-'?(,‘%%;':L—f.w-. (7)

L ]

C.r %ﬂ.u[f'i’;,—‘?::_;sr], (8)

K,
R"."'R-:‘iem.)q" (9)
/WK -
Lmv 'I?.“"f*emu (10)

= - L -
For the negative values EmiO.S’ the 1nductance LmiO.S i1s re
placed with the capacitance

. K‘
Cn:u' w'K,az¢&, /¢

easl (11)

If
Em Sl:ﬁ‘V

PRy

then the capacitance Cm must be replaced with the inductance

L K 4

. .n.K.w‘)..gi. /-£ siniy )

In this diagram, the voltage at the nodes Um determine
the value of the component of the magnetlc field Intenslty,
and the currents Zn¢ , the value of the electric fleld inten-
sity.

In Eqs. (3) through (12), k; and k, are constant coeffi-
clents selected in accordance with the principle of electro-
dynamic similitude.
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The design of the universal model (one-dimensional) makes
it possible to rapidly select different diagrams shown in
Flg. 1, and to match the model input with the generator output.
Additionally, there 1s the option of changing the model &g,
according to the necessary boundary conditions.

When electromagnetic waves pass through an iInhomogeneous
plasma layer, the attenuation constant a 1is the main parameter.
But when the electrical length of an inhomogeneous plasma layer
exceeds the electrical length of the model or when the inhomo-

geneous plasma layer has large attenuations, U cannot always

npas.
be measured. In these cases, the problem must be solved by
stages. To do thils, the inhomogeneous plasma layer 1is divided

into parts.

A block dlagram for deternlning attenuation by parts 1s shown
in Fig. 2a. The letters A and D designate ghe start and end of
the model, respectively; the letters B and &, the points dividing
the inhomogeneous layer into three parts: I, II, III. When the
problem was formulated, it was assumed that the plane wave is
incident from free space at an inhomogeneous layer and exits
into unbounded free space.

As can be seen in Fig. 2b, the solution 1is carried out to
completion, that is, first part III of the layer is considered.
The 2, of the section of the model CD is determlined by con-
necting the generator to the model at point C across resistance
R, serving for determining the complex amplitude of the current,
and a7y the attenuation constant for layer III.

By replacing the section of the model CD with the reslstance
24+ obtained, we determine art and &, and so on. If the number
of partitionings 1s m, total attenuation is obtained by summing

the attenuation constants a..
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When the signal passes through the inhomogeneous layer,
the phase of the arriving signal with respect to the input is
measured in the usual way: by connecting a phasemeter to the
model input and output. Shown in Fig. 2¢ 1is a phasemeter con-
nectlon dlagram. But 1if the signal does not pass through the
layer, the above-described method of dividing the model into
parts is used. Then the tofal phase ¢AD will be

v‘.' Ve." 'f.‘ 'v‘.

The phasemeter connection diagram for connecting the phase-
meter to each individual model part i1s the same as in Fig. 2c.
Measuring the phase by parts ylelded good agreement with the
result of measuring the phase for the entire model. The error
of measurement was +10. Actual working with the universal
model showed that, by successively replacing the model parts
with their 2, , because of rapid commutatlion of the model
elements the problem can be solved without significant degrada-
tion of solution accuracy.

12
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AEFLECTION OF A PLANE TM WAVE FROM A HOMOGENEOUS PLASMA
JALF-SPACE

I. G. Yakushkin and V. A, Permyakov

1. As 1s known, when a TM wave 1s reflected from an in-
homogeneous plane stratified plasma with the law of wvarilation
of the dielectric constant g@)mel)a » €7 40 » in the neigh-

, borhood of zero €, resonance absorption of the field occurs.
: i In this case, the, modulus of the reflection coefficient is

| different from unity even when there are infinitesimal heat
losses 1in the layer. Although the phenomenon of resonance

absorption has been investigated in a large number of publica-
tions [3-6], they lack detailed numerical results and approxi-
mate expressions sultable for determining the reflection coef-
ficient when there are arbltrary gradients of the dielectric
constant., Below we analyze the function of the reflection coef-
ficlent of a TM wave reflected from a plasma half-space, with
the linear law E(a)--an.n-i- when there are arbitrary gradients
of €.

The reflectlon coefficlent for the magnetlic field is defined

by the expression
ano-é
R.m * 1} (l)

where Z 1s the normalized (divided by free-space impedance)
impedance of the layer, equal to

j 13
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‘(®)
2=~ ‘7:'(':')'0('5) (2)

and U(z) satlisfies the equation

Ut - EBU' + wecn- sin*0)U +0 (3)

The angle of incidence of the wave 6 1s measured from the
normal to the interface.

2. When there are arbitrary gradlents of €, the solution
of Eg. (3) 1s sought for by the power series method at the
point €=0 and has the form [4, 9]

V) s(fa)- e&.t)vw U(é), (4)

where

t-éﬁ&f"ka», '5-655“

U@ ZAL", Asl, A0 AS ,m(u oA )
U@-ZB84, 8-, 8,28,+0,
B-..-{,.—-.,,D(-z‘A... B, )*8,J nss.

The unknown function f£(A) appearing in Eq. (4) 1s determined
on the conditlon that the solution of U(t) decreases as t—++w
(e+=-»)., Different formulas are presented in [3] for determin-
ing the functions f(A) sultable for both analytic and machine
calculations. According to [9], when |A[<1, the function ()
is equal, with at least an accuracy of 5 percent, to 1ts value

when 6=0: $(X) = f(c)= 0,83,

Using this value of the function f(A) and retalning the
terms of the power series (4) to the order (k/a)2 inclusively,
we get the following asymptotic formula for skin impedance that
1s sultable for large gradlents of e:

Z.c . ()% §-[as-§tu} oix]§ un'o
© 10606 (B]®- 3 (AT oson o (g [ S B <x) (5)

14




Beginning with Eq. (5), we can show that when a>>1l, the modulus
of the reflection coefficient takes on the minimum value of

IR pqnV1 to 2.3(k/2)%/3 when 8varccos ImZ. With increase in a
Rmin tends to unity and 1s observed at grazing angles of inci-
dence.

3. When a<<k and for not very shallow incidence, the phase
integral method (7] can be applied for an approximate solution
of Eq. (3). The phase integral method solution of Eq. (3) can
be constructed in both the region of large positive z, that is,
where €<0, as well as in the region of negative z. After the
substitutions Ue®F; g.%e@) , Eq. (3) takes on the form

Fie(5-A-4h)F =0, (6)

where A '(g_)“‘m'o

For large &, in Eq. (6) the term (3/“)&'2 can be neglected.
So the phase integral method solution of Eg. (6) for large nega-
tive £, selected on the conditions of decreasing in the domain
where £<0, takes on the form

c 2
Fgp o [A°E ot (7)

For large positive £, based on the radiation conditions, we can
write

£ [
Feoeme {oots[ER e oRem[ BT 2] (®)

The coefficient A, in the case if we can neglect reflection
from the 1lnterface of media, can be determined simply on the
condition of interlinking with the lncident wave., The reflection
coefficlent of the wave R from an inhomogeneous half-space is the
principal quantity to be determined. For large values of A,
generally the energy does not penetrate to the point £=0. In
this case, Eq. (6) can be reduced to the Airy differential equa-
tion and it turns out that R=1, The situation is more involved
when Av1, since in this case the reflection is determined by the

15
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funection 5'*‘554 . This function has already three inflection
points, two of which are located at complex values of &.

To take this reflection into account, by using the phase
integral method it is important to be able to consider the
phase integral method approximation to be applicable even in
the neighborhood of a pole. For thls purpose, the function
p(£) used in constructing the phase integral method solution
(71, Egqs. (6) must be selected so that the error of the phase
integral method solution remains finite when £=0. The selection
(6] of A

e (9)

leads to this result.

in the following treatment, the notation below will be used:

@.5)7p fexp ¢if RS 48] (5. enpie [ g7
CS-LJtcxp(-;.fT_;)'ds), ..- . (10)

To apply the phase integral method in determining the coupling
coefficient assoclating the asymptotic representations of the
solution for positive and negative £, we must know the structure
of the Stokes lines, that is, the lines where

(£ is the root of the equation

)
L..f.ﬂpTg')'dg 0 p(£)=0).

The pattern of the Stokes lines for the function p(&) assigned
by Eq. (9) 1s shown in Fig. 1. The dashed line shows the con-

£ -
Jugate Stokes lines at which Rof;‘V'P—(!—) dg =0

For large negative g, the solution must be sought in the
form of (7), that is, in region IV the solution is of the form
F=C(£,£2).
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In region III this solution is growing and therefore in the
transition to region II, in accordance with the conventional

f i rules for transition through conjugate Stokes lines [7,8], we
get

FeC{(s,8)[8,8.) + (8, 8) L83}
At Stokes line I we have

FeoCltg B)E.8.3+i(s. 8008, £, L. D)E 2]}

By selecting C so that the solution 1s brought tc the form
(8), that is, (&, 5J¥ , where

Ve exp {-tf;:df""j d’ ":Iv? =A dg}o

we get

Ret¥V*[1er2, 21" (11)
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To derive the formula for the reflection coefficient, we
used the complex inflection point lying in the upper half-space.

Use of the lower inflection point does not lead to, and must
not lead to the same result, since Eg. (4), at point £=0, has
g= a branch point of infinite order, therefore by bypassing this
point in the lower half-space, we arrive at another sheet of a
manifold plane on which the solution 1s defined.

ETEIE S T

The cofactor appearing in Eq. (11) ahead of the brackets
for the modulo 1s equal to unity and describes the phase shift 1

of the reflected wave. The cofactor in the brackets describes
the resonance absorption of the TM wave.

In the limiting cases, the solution obtained coincides with
known results,

B e

As can be seen from (11), R+*1 as A+», When A=0, the same

value R=1i 1s obtained from the exact solution and from Eq. (1l).
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4. PFigs. 2 and 3 present the results of computing the re-
flection coefficient by the power series method (4) on a com-
puter (solid line), and theilr comparlson with the approximation
of a strongly inhomogeneous plasma (5) (crosses) with the appro-
ximation of a weakly inhomogeneous plasma (dashed line) (11).
From a comparison, there must be close agreement of the approxi-

mation of the weakly inhomogeneous plasma with the rigorous cal-
culation when a<0.lk in the entire range of angles of incidence
for plane waves. From the graphs it follows that |R| has a min-
imum equal to ~0.7 when Anv0.5, and beginning with An2.25, |R| 1is
in practice equal to unity. For large gradients of € (lga/kg
%O.l), the phase integral method is suitable in the range of
angles close to zero (8540 to 60°). The inaccuracy of approxima-
tion (11) at grazing angles of incidence in this region of
gradlents of € is explained by the fact that in its derivation
the layer is assumed unbounded, while the numerical results were
obtained when the wave was incident on a half-space.

The approximation of a strongly inhomogeneous plasma (5)
proves to be suitable when aRk. It bears noting that when
av(l to 0.5)k in the region of grazing angles of incidence,
this approximation agrees closely with the rigorous calculation.

Thus, in the aggregate the approximate solutions for the
weakly inhomogeneous and strongly lnhomogeneous plasma make it
rossible to describe the behavior of the reflection coefficient
of the TM wave for arbiltrary gradients of e¢.







EFFECT OF LINEAR TRANSITIOJ LAYER ON THE ATTENUATION OF WAVES
IN A PLANE STRATIFIED WAVEGUIDE

V. X. Polishchuk
1. Derivatlon of Dispersion Equations

Let us examine a plane-stratified waveguide, with relative
dlelectric constant €hs which 1s a continuous even function of
the coordinate x (Fig. 1) and wh}ch, when x>0, can be expressed
by the formulas

&,, o<x<{,

A'E'.(x). Q(x,~x), l‘X<e.da
e, x>led,

[ o] i :
‘.Si‘—‘. x..z.z%'.

If a slit in a screen symmetrically positioned and symme-
trically exclted with respect to the wavegulde axis 1s excited
with a source, only even TM waves will exist in the waveguide [10].

There 1s a single component of the magnetic field Hy in the
TM wave propagating along the z axls. Conslidering that the de-
pendence of Hy on coordinates 1s of the form
Hy = H(x)e™
(we assume that the field does not depend on the coordinate y)
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H"'&H'*(“-"n"")/‘/ *0, (1)

where ko is the free-space wave number.

The component of the electric field Ez that is tangent to
the layer boundaries can be determined in terms of H(x) with the
formulas

3 " E(x) e'“', E(- (£w€.£,)"H ),

where €9 1s the absolute dielectric constant of a vacuum. Let
us find the expressions for the functions H(x) and E(x) in dif-
ferent regions of the wavegulde; in view of symmetry, we will
consider the field only when x>0.

Region T. O0O<x<%
Eq. (1) takes on the form: H"+q2
even wave types we get
) . .‘ » '
H(x)ecosgx, Elx)e-gliwt,e,) singx,
g' +h'exle, .

H=0. Solving it, for the

(2) |
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The expression for H(x) is determined, strictly speaking, with
an accuracy to an arbitrary constant cofactor. But since the

amplitude of the waves in the waveguide is not of interest to
us, we assume that in region 1 it is equal to unity, for H(X).

Region 3. x>%+4

Eg. (1) takes on the following form: H"-p°H=0. With allow-
ance for the weakening of the field as x+», we ind
H@) =H,e™" E(x)* pive,e.) H,e™, (3)
' P‘-h‘niy“.. :
Region 2 [sicl. <x<+d
In region 2 we have the equation
H"s gz H s la (x,-x)-h)H =0 (1)

We will solve 1t using series in powers of the difference
X4=X and, considering the width of region 2 to te small

(d/2<<1l), in the result we will 1limit ourselves to a finite
number of terms.

It is kxnown [11] that the general solution of Egq. (4) is
f the forr
of the form H(x) = c,u(x) » ¢, (x),
where u and v are two linearly independent solutions of Eq. (4),
represented in the form of the expansions
usg a,(x,-%)"", Vs sulrieon) eI b, (x,-%)]

whose coefficients, determined from the recursion formulas,

are equal to, respectively:

[
a,r1, a'-b‘ Q‘c#‘ eee .
sef, bt b,b00, 852 ,5..._%_',... :
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Using these expressions, by limiting ourselves to terms not
higher than the first order of smallness in X4=X and 4, we
get o
H(x)=A, E(x)-i(iuﬁf,a)"(Ab'h K (%e-x)+B) (5)
By here equating the corresponding Egs. (2), (3), and (5) at
the boundaries of regions 1 through 3, we get the following
system of dispersion gquations:

giggle-fp LK (bE 13),

pleq's x, (€,* £) (8)

2. Analysls of Disprersion Equations

By neglecting waves of all types except for the principal
wave, wWwe analyze system (6) for the symmetrical transition layer
€,=€_=¢.

If we convert to the quantities €pl ,Tegl ,Lpehl, el ,
and J-ﬁ , and if we use Egs. (2) and (8), we can get the follow-
ing system of equations: c*tjt-i("-t‘)&
Gt o 2w, (7)
cr the single disversion equatlon for the longitudinal wave

number T o (P g @57 o ip'5. (8)

To find the solutions of the system (7) or Eq. (8), we assume
that they are known to use when 6=0 and Jm&e0 . We denote the
quantitles o, t, and p corresponding to this case with Og9s Tgo
and Pos that is, under our assumption the following relationshlps

S
VTRT Vgl tg (1«0 (10)

obtain:

Suppose now €el-ig,gre¢ , and G&#¥0. Let us represent the longl-

tudinal wave number P9 in the form p=pO+pl and substitute it in

Eq. (8). By expanding the left and right parts of (8) in seriles

in terms of the small parameters §, €1 and Py and referring to
24




Eq. (9), we get
PeL(1-i@mEspe),

with an accuracy to the infinitesimals of the second order, where

4 |G- IV?-:-T * 2P pl - pb
; o —%7&)-2*( =t ,;.%. (11)

We see that to the first approximation of the method of per-

turbatlons, the corrections to the constant of propagation due to
the transition layer and to the imaginary part of the dielectric
constant are additive and therefore can be examined independently
of each other. In addition, in the case of a symmetric transi-

tion layer these correctlons are purely imaginary for propagating
wave types, that 1is, thelr phase veloclitles remain unchanged.

gy

Presented in the study [12] are the solutions of the "un-
perturbed" equation (10) for different ma . When investigating

the behavior of the correction coefflcients o and 8, it is con-

venient for us to use Eq. (10) as well as system (9). And as the ;
d independent variable we select not the frequency =, but the ,4

transverse wave number Tge

Let us find the critical values of 2 determining the reso-
nance in the cross-section of the wavegulde at which pO=O. |

By substituting po=0 in Eq. (10), we get the equation
® (10890

from which we find

. 0, meo

2.0 1x(m-£), mo.
By differentiating Eq. (10) at the point mew=,, we can show that
when 8‘&",’ the longitudinal wave number Pg 1s imaginary, and
when ®>%, it is real, that 1s, the critical value of for the
fundamental wave 1s s 9,’, and at e,«0. If the frequency = takes
on the values within the limits Wea<¥ , all waves of the higher
types wlill be attenuating.
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When ¥<2< % the longitudinal wave number T
values in the interval ¢/ f57,¢ ¥ .

0 takes on

The solutions of Egs. (9) and (10) in the interval {?R‘ﬁf
(for the fundamental wave) are shown in Fig. 2 in the form of
the functions G,(t), #,(%) and p(r) . Also presented there are
the plots for the coefficients a(ro) and B(ro) determining the
behavicr of the imaglnary part of the constant of propagation
P, that is, the decrement of attenuation. From Fig. 2 we see
that for the fundamental wave the curve B(TO) trends everywhere
higher than the curve a(ro),'such that when there are identical
values of ¢ and €1 the resonance absorption will always be less
than the heat losses. In addition, when T0+n/2, ®=—e= (at higher
frequencies) the function B(TO) tends to a finite value, and
a(ro), to zero. So by increasing the frequency (or, which amounts
to the same thing, the electrical dimension of the waveguide), the
resonance absorption can be made small enough.

In the other limiting case, when the frequency is near-
critical in value, we can find

o 35 - pe iy (=)

In this case we observe the strong dependence of B on fre-
quency and, in addition, B+« (T*Tcr). So at near-critical fre-
quencies, Eq. (11) may prove to be invalid for B obtained by the

method of perturbations.

Calculations show that 1n estimational calculations of the
attenuation of radio waves 1n an inhomogeneous wavegulde the
losses due to the transition region can be neglected.

=
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CHARACTERISTICS CF RADIATION OF APERTURE ANTENNAS IN A
PLANE-STRATIFIED MEDIUM

A. P. Anyutin, V. A. Permyakov, and V. K. Polishchuk

St SR

L Presented in thils study are working formulas and the results
| of calculation of radiation patterns of a (clrcular) waveguide
located 1n an infinite metal plane under a dielectric layer and
a plasma layer. In deriving the formulas for the radiation
' patterns it 1s assumed that: 1) the field distribution in the
open end of the rectangular (circular) waveguide coincides with
3 the field distribution of fthe wave HOl (Hll) propagating in the
‘ waveguide; 2) the reflection coefficlent p of the wave HOl (Hll)
from the open end of the waveguide 1s given; and 3) the complex
dielectric constant of the plasma varies only aliong the normal

to the surface and is defined by the formula [3]:
047" Y/
. 480 ”im . Y ;ﬁlﬂ A/F(zz
«za).‘.va. "a' .‘ ’.

where w 1s the working frequency, Ve is the effective number of

electron collisions in the plasma, and Ne(z) is the electron con-

centration in the plasma. These assumptions allow us to reduce
the inltial problem to a problem of the radiation of a current
sheet iIn a two-sheet medium (Fig. 1). A method of solving this
} problem consists in the following [13]: by applying the Fouriler
E transform to the wave equation with respect to the coordinates
f‘ X, ¥, and by satisfying the boundary conditions, a system of
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linear algebraic equations results for the spectral representa-

tions of the fields. The dependence of all spectral representa-
tions on the coordinate z is determined with ordinary differen-

tial equations with variable coordinates (in the case of an in-

homogeneous plasma).

Z|
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Fig. 1

By applying the inverse Fourier transform to the solution of
the system of linear algebraic equations, we get the integral
representation of the filelds. To define the fields in the far
zone, the double integrals representing them are calculated
with the method of the integral [14]. The final expressions
for the components of the electric field in the far zone are
as follows:

a) rectangular waveguilde

(1+p)y; €038 +Lit-) ;" sina
Lﬁ?mrﬁm] it
MK‘M‘MV 'QSO'MV
4 {Eﬁﬁ' _

E A cosa « C(1-p) /.

asa,W@)o §£%%2) .

2)
sin(x,a $in@cos ¥, nbsindsine, '
—L--.—TL,,, e ‘”"‘{&'ﬂﬁy'“‘"“"
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N b) circular waveguide

E,-8 (12, c088+i(4-P) Z5ina]  Jjnasineleasosin?
" 6"".%77 =TT WY 317 A (Baskey,

.8 “ *p) imsdu(ﬁﬁ?.ﬂﬂd] Jmam
o g S,
B ina’E,J, (sa) i o(2R)"

In Egs. (1)=(4), U(z) 1s the solution of the equation

F .
.; 37’{ ¢.x,'L‘£, @ - sinf@)]U <0 (5)
b
b
: with the initial conditions Ul)s 1, U)«-ix,coso at the

point z=22; V(z) is the solution of the equation

& - "zi)az 5% + k26, (2) - sin*6] Vw0 (6)

with the initial conditions  V(§)e1, V{&)e-ined)cosé at the
point z=22;

{ a is the dimension of the narrow wall of the waveguide

] (wavegulde radius)

b is the dimension of the wide wall of the waveguide
el(z) is the relative dielectric constant of the plasma

€y is the relative dielectric constant of the dielectric;

ooVe- EEA-K.".J A-x,n i

ad'f“ -
k

0 is the wave number of free space;
VTP (- V)

), are Bessel functions

¢.{,d are as shown in Fig. 1.




The solutions of Egs. (5) and (6) are sought for numerically
by the Runge-Kutta method [15]; where el(z) is approximated with
the function 8,(1)-A.!"5'- Specifying el(z) in another analytic
form poses no Tundamental difficulties in calculations.

The expressions found for the flelds in the far zone can be
used in calculating the antenna efficiency n:

? s E/P.,

where PZ is the antenna power,
e % : 1oyt
’},'R'[ d«rj. & (IE)* < IE,] sin o,
PO i1s the power fed to the waveguide;

a) a rectangular wavegulde

?ﬂ‘E:- 1<
o We

a

b) a circular waveguide
R+ (4-p) TG IEI' T (e ] 3 (a).

These formulas for calculating the characteristics of
antenna radiation and antenna efficiency in the plane-strati-
fied medium were programmed for computations on a computer.

For xo=6.28; 2,=05 £,=1; A6=4°; a=0.03A,; B=o.5AO; d=0;
shown in Fig. 2 are the radiation patterns of an antenna in
the plane of an electric vector without allowing for plasma
(dot=-dashed line) and for two laws of varlation in the dlelec-
tric constant of the plasma, the linear (solid line) and the
quadratic (dashed line). The calculated distributions e(z) are
also presented in Fig. 2. From the figure it follows that the
plasma layer leads to an abrupt drop in the relative radiation
level 1n the region of grazing angles of observation. We can
also note the weak dependence of the radiation pattern on the
law €(z) of the plasma, characteristic of thin, compared with
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the wavelength, inhomogeneous plasma layers with approximately
equal cumulative values of the electron concentration.

04—

O G o qmmie o g

4 &lal-zas-id
1Y & br)oa"-05 ~H
QEPOH

[T Y %0°

32




L eew v me JIRCine e 2 Ko Exie o e Sgab it : -

APPROXIMATE METHOD OF DIAGNOSTICS OF INHOMOGENEOUS PLASMA
M. B. Aksenov, V., G. Kartashev, A. P. Mayorov, and V. L. Skachkov
Theoretical Analysis of Problem

In investigating plasma parameters there often appears the
necessity of determining the law of spatial distribution of the
main plasma parameters: concentration Ne and collision rate
Vape Known methods of microwave dlagnostics of inhomogeneous
plasma (for example, [16]), permitting the determination of the
spatial distribution of concentration, are based on the geometric
optical approximation and therefore are not always applicable.

Rigorous methods of diagnostics (for example, [17]) are very com-

plex and have not yet been fully worked out. But in some cases, :
when there is apriori information on the kind of distrivution of i
plasma concentration, the problem of dlagnostics can be consi-

derably simplified. Examined in thils study is a method of

diagnostics of a plane-stratified plasma based on the assumption '
that the plasma concentration varies in space according to an ex-

ponential law, but the collision frequency is constant. The method !
ls based on measuring the coefficient of reflection from the plasma

when it 1is irradiated with a plane electromagnetic wave.

Let us examine the normal incidence of a plane electromag-
netic wave from a homogeneous dielectric with dieslectric constant

E—
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€, On a plane-stratified plasma with a concentratlon that varies

in the direction of the z-axls according to an exponential law

N,@)e N, o™  (a>0). (1)

The plane z=0 is the interface of plasma and the dielectric.
Without constraints on generality, we will assume that the irrad-
iating field has the components Ex and Hy.

As shown in [3], the equation for the electric field inten-
sity in this case can be represented in the following form

3
3;505“’1‘5;(@,:35-0, (2)

where

. © L g Nem) (weivn
E.Ml)'*-"m—w',?m.;‘;’) (3)
The general solution of Eg. (2) with reference to (1) and (3)
can be written in the form
(%)
EeC T (w) +C 1,0 (w),

where
webe¥?; 3-&%«“5
a . ,
e Sl ped
3-%2 1s the dimensionless coordinate

ac
{*@ 1is the dimensionless constant of attenuation

»# is the plasma frequency when z=0,
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From inspection of the solution (4) for small values of the
arguments u (3=*) it follows that J, (u)~e" and therefore,
¢,=0. Finally, solution (4) can be written in the form

E'C;J (‘ 'M’"

From the boundary conditions when z=0 let us find an =2xpres-
sion for the complex reflection coefficient T

o Ve -xt o/ 0
VE, ex®] (H)/v‘,(U)

Using the recurrence relationship for the Bessel functions, we
get a final expression for the reflection coefficient

,— V‘— "’Kb \7‘0( (“)J (a) -
PEXEPLI AN £y )

i;leay |

By representing the Bessel functions in the form of series,
after some transformations we get

.7 [ /- "']
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By applying Egs. (5) and (6), we can calculate the values
of the modulus and the phase of the coefficient of reflection
by the plasma for any value of the coefficient NO and any value
of the parameter a. Some results of the calculations for e=1
are presented in Figs., 1 and 2, where for convenience in further
applicatlon, the lines of the modulus level and the phase of the
reflection coefficient are presented for the frequencies of the
probe field fl=lo GHz and f2=30 GHz.

Method of Determining the Plasma Parameters Based on Experi-
mental Data

Let us examine the problem of the practical determination of

the plasma parameters NO, @, and Ve from measurements of the
reflection coefficlent.
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If the collision rate is small, so that the effect of colli-
sions on the reflection coefficient can be neglected, to deter-
mine the plasma parameters Ng and a, it is §ufficient to measure
the modulus of the reflection coefficient I and If;l at two
rates fl and f,. Then from the plot shown in Fig. 1, we can
find the points of intersection of the corresponding curves

Il and Il and determine the values of N, and o.

When there are collisions in the plasma, the procedure of
interpreting the experimental data is considerably more involved.
In this case, to determine the three plasma parameters NO’ O
and V,e , We must measure three parameters of the reflected
waves. This can be either the modulus of the reflection coef-
ficient at three rates I, lﬁl, and ”:’, or the modulus /7
and the phase 91 of the reflection coefficient at tng same
rate and the modulus of the reflection coefficient Il at the
second rate. Analysis shows that preference must be given to
the second method, since the task o measuring the coefficient
of reflection from one part of the plasma at three rates proves
to be complex.

Tor the practical determination of the plasma parameters
in this case, we must calculate and plot the graphs c¢f the lines
of the level Mil. 9 ,Ifl (Fig. 2) for different values of q,
thus constructing an album of curves, each page of which corres-
ponds to a certain a. Further, from the measured values c: I/,
& , and uilwe seek the page in the album where 3ll three
curves of the levelslﬂh oclﬁliJWersect at the same roint. The

coordinates of this point define the values of NO and W, and

"y
the page number, the value of a.

This method of diagnostics of an inhomogenecus rlasma
proves to be quite simple, but 1t 1s suiltable only when the
plasma concentration exhibits an exponential distribution. If
the distribution of the concentratlon differs from the exponen-
tial, rigorous methods of plasma diagnostics must be employed.
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PROBLEM QOF MEASURING THE PARAMETERS OF LOSSY INHOMOGENEQUS
DIELECTRICS

V. G. Kartashev and A. P. Mayorov
Measurement of Parameters of Dielectrics in Normal Probing

Let us examine the normal incidence of a plane electromag-
netic wave on the surface of an inhomogeneous plane-stratified
dielectric with relative dielectric constant g(z). We assume
the relative permeabillity of the dielectric u to be constant.
We take the direction of the coordlnate axes and the polariza-
tion of the irradiating wave such that the boundary of the
dielectric coincides with the 2z=0 plane, and the field has only
the components Ex and Hy.

From Maxwell's equations, for the complex amplitudes of the
fleld it 1s easy to derive the expresslons

33 < -iwelE, } (1)
g—i’ -_-iwfl.H,

where

£ agE-iTi e
By performing the substitution of variables

T [ v/./t.(;) RelE](5) o, (2)

we derive an equation for the component Ex
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%‘%.%’%ﬁq '.‘Q"Pa)E'. (3)

where

Z'A@;:‘ P Ghae (4)

Employing the substitution U-’fg’t_’, , we get the final equation

U’ c""P“"' 901U =0, (5)
where
L 2 'z' Y (6)
0")‘(22) -(&) -

if the dielectric under study 1s not lossy (o=0), then
p(t)=1, and Eq. (5) takes on the form for which the inverse
Sturm-Liouville problem was solved in tlB]. In thils case, the
problem of measuring the dielectric constant e(z) of a nonlossy
dielectric can be reduced to the following:

The complex reflection coefficient T'(w) 1s measured as a
function of the field frequency; then the characteristic func-
tion of Eq. (5) 1s determined:

20N {o((w)
M(w)« “To T (w)

Then, according to [19], the spectral function e(A) is found:
. Ao @

PN - 'l:: i‘fn 1 'f J.m Mwe+in)dw
and using the method given 1n [18] the unknown coefficient ¢(71)
of Eq. (5) 1s determined. Then, by solving Eq. (6), using Egs.
(4) and (2) we can find the desired function e(z). Specific

procedures for solving this problem as applled to inhomogeneous
transmission lines are considered in detail in [20].

If the conductivity of the dlelectric cannot be neglected,

this method of solving the inverse problem is not applicable.
In Eq. (5) the spectral parameter w? 1s not separated from the
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function of 1; the solution of the inverse problem for equations
of this kind is not yet known.

Thus normal probing of an inhomogeneous dielectric with a
plane electromagnetic wave, usling now available mathematical
methods, makes 1t possible to determine the dielectric parameters
only when the dielectric 1s nonlossy.

Measuring the Parameters of Dielectrics in Slant Probing

The slant incldence of a plane electromagnetic wave on a
plane-stratified medium 1s described with the equation [21]

F e n}le(a)-€,8in"0,1F <0 (7)

where €'(z) is the complex dlelectric constant of the test
medium (z>0)
€ is the dielectric constant of the medium for [text
is missing]
61 is the angle of incidence of the wave

Eq. (7) can be converted to the form

F’eLa-g@IFf =0, (8)
where

Ae & (4-&,5in%); (9)

g(s) = CE@) -1 (10)

If the frequency w 1s fixed, the spectral parameter A and
the function of the coordinate q(z) are not related in Eq. (8)
as with the real and the complex function q(z). The method of
solving the inverse problem for Eq. (8) with the complex-valued
coefficlent q(z) was worked out in [22]. To carry out this .
method we must determine the complex reflection coefflicient T as
a function of the angle of incidence 01 and find the function
m(A)
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M(A) iV cos6, 1=

which acts as the characteristic function of Eq. (8).

i’; One feature of thils method 1s the fact that when the angle
? . of incidence 61 varles, the spectral parameter A in accordance
with Eq. (9) can vary over the limits from 0 to m2/c2. Thus,
the fungtion m(A) proves to be specified not for the entire
semliaxis 0<A<w, but only for the interval (O,mz/cz). But by
suitably selecting the field frequency w and using the asymp-
totic relationships for m(A), the error caused by the incomplete
specification of the function m(A) can be reduced to zero.

A second feature of the slant probing method 1s caused by
the displacement of the beam of electromagnetic waves during

reflection, leading to a reduction in the measured reflection
coefficient and to loss of information about the deep-lying
layers of the dielectric. To reduce the influence of this
b effect, it 1s best to irradiate the test object with a broad
beam whose transverse dimensions are much larger than the
assumed beam displacement.

41




R o @ ik e g N, g 4. . B O s e _ T L T -
ot L MW o e st T e 3 4 g A

!

3 |
: ’
i
i
'
.
i
i
ol
.

,

!

PART TWO f

EXCITATION AND DIFFRACTION OF ELECTROMAGNETIC WAVES

g g e emems =
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SOME SOLUTICNS OF MAXWELL'S EQUATIONS

G. T. Markov

Presented at the radio engineering section of the scilentific-
englneering conference of the Moscow Power Institute in
April 1670

1. Suppose that in a spherical region with radius a, with
parameters of the medium o=0, €55 Mg (vacuum), there is given
the distribution of the volume density of electric currents
F' varying with time according to the law ¢“*. Imagine an
electromagnetic fleld in the form of the superpositioning of
osclllations of electrical and magnetic types:

E-E%E", A<A'~A" . The oscillations of the electrical type
are excited with the currents f., and the oscillations of the
magnetic type, with the currents ],"' , where }"-}'”-}"" .

Let us write out the expressions for the complex amplitudes
of the component vectors of current and fileld satisfying the in-
homogeneous Maxwell's equations:

1ﬂtiT'£a%gEni-: 10t2r'-£uﬁfuﬁ:
dw?-{-, divHe0. (1)

Using the general expressions given in [13, 23], we get the
following relationships for one of the spatial harmonics.
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Oscillations of the Electrical Type (Hr=0)

}” %Lpzw(x z)P(eos a) P
ile —f—@wm P(

}:"h— T ‘xqéﬂ%ﬁ7«nmne4"

E 7—11-.'}“ nn. o
& 33@3'”’) x
'I!ie‘.lv z’smo%‘s?u_‘%'"

M, _«g.a.av H,»~cae, 255,

where

U~ gz S Lf l0)-F Rk 0L s €

The frequency of the oscillations is determined from the

condition

v.(xa) -0,

where Kww EM, , n=1,2,3,....

In Eqs. (2) and (4),@)f is a real function, finite, and
with its first and second derivatives on the interval from
r=0 to r=a; outslde thils interval 1t is assumed equal

Pg(cos 8) are adjoint Legendre functions,

v, 0fzs Jeg(n) are radial spherical functions

r, e, ¢ are spherical coordinates

The coefficlents arm in Eqs. (2) and (4) are not defined here.

to zero;




The validity of the solutions presented is verified by the
direct substitution of Egs. (2), (3), and (4) in the Maxwell's
equation (1). The vectors of the fields * and R’ on the sur-
face of the sphere r=a are equal to zerc and according to the
theorem of equivalency [13] the electromagnetic field of cur-
rents (2) in the external region of the system (r>a) is iden-
tically equal to zero.

Thus, the system of currents (2) is nonradiating. The
power of the electromagnetic c¢scillation generators is reactive
and can be determined by the method of induced electromotive
forces with the following formula [13]:

Prect- [  Eav (6)

By substituting Egqs. (2) and (3) in Eq. (6) and bearing in
mind that

- e
[ae T {2
J;ne-«;e‘«n»e'a-»an. do -
4 - - Y - - :
[ [2Eouo 2lend , o plana el sine do o
. { 0 mpu n'en :

2 when n'=n
Y o hen n R

we get the following expression for the generator power:
[} . '
® al (7)
Pt g o Gt PO s e,
tep T

We note that the distribution of the volume density of
electrical charges derived from the continuity equaticn

when m'+m
when m'=m

av;”oqu'O corresponds to the distribution of the volume
density of electric currents (2):

P T & Centnen £ 4w (0 - (8)
- F (D o)Al
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Oscillations of the Magnetic Type (Er=0)
Y _J - ) ') j' .o‘
I8 LGP 00223 4 8 v P ecns o
g ac L e i X Fiawo s i

‘ H‘.'.'{i”_‘ﬂu;' H:.'%a‘ Ug ’ H:'—4" ‘%5—“‘0?'

Tsino
E:"i:_n';"%%". E:-.éu_,u.%%n‘ (10)

where
U o=, [fTa) - T0] %t 2)Pleos o) €™ (11)

The frequency cf oscillations of the magnetic type is
etermined from the same condition (5). The function f&)
finite and continuous together with 1ts derivatives on

[o}

k is
the interval from r=0 to r=a and 1s equal to zero outside
this interval.

The validity of solutions (9), (10), and (1l1) is verified
' by thelr direct substitution in Maxwell's equation (1). The
electromagnetic field of osclllations of the magnetic type on
the surface of a sphere r=a and outside this sphere is equal
to zero, that is, the system of currents (9) is also nonradia-

ting.

Substitution of (9) and (10) in (6) leads to the following
expression for the power of generators of oscillations of the
magnetlc tyve

P bt i ip (oo 1B g (12)

We note that dévf'-o s and therefore the volume density
of electric charges for oscillations of the magnetic tyve 1s
always equal to zero.
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2. 3uperimposing the electric and magnetic oscillations
makes 1t possible to reduce the system to the resonance state,
that is, a state in which the total energy of the electromagnetic
field of the system with time remains constant and changes from
electrical to magnetic energy, and vice versa. This will occur
under the condition that the total reactive power of the gene-
rators of electromagnetic osclllations is equal to zero:

P=p'+po (13)

From substituting (7) and (12) in (13), we get the expression

ot IR i + SCF Twtecoe

T aastntf .(2{—._?9)':‘»;,‘«,:) de (14)

If we turn to Poynting's theorem for this system (as applied
to instantanecus valiues)

:‘/,775“"%—[(‘!;“’#)% (15)

“hen we see that the left-hand side of (15), under condition ;
(i4), proves tc be equal to zero. Thus, the total instantaneous

power of generators of electromagnetic coscillations of the sys-

tem is also egqual to zero and the total energy of the electro-

magnetic field of the system remains constant with time.

) L)
3. The functions f(® and f® are arbitrary in the sense

indicated above. We can, in particular, assume f?u- f7ﬂ-t

Then condition (14) can be reduced to the following:

b Fim

If the following boundary conditions are irposed on these

functions:
- }
a‘[“y - Af " , i
r ) l,,. °, 3% L.:o, (16) ;
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the electrical charges and currents at the boundary of the

system (r=a) prove to be eQual to zero. So they will be con-

tinuous everywhere, including the boundary of the system.




L diar o st

ITERATIVE METHODS OF SYNTHESIZING REFLECTION ARRAYS
A. F. Chaplin, V. A. Mashkov, and V. F. Makkaveyeva
This paper examines certain iterative methods of synthe-

sizing methods cof synthesizing arrays of radiators lcaded
ith reactances. Because there 1s no widely accepted name

=

for this class of arrays, we will call them "reflection"
arrays, as is done in a number of publications . The formu-
laticen of the problem of syntheslizing these arrays was given
in the study [25]. In examining reflection arrays, the system
of Kirchhoff equations 1s conveniently written out in the form

{23 - CEI<O) <> <> .

wihaere [Z2] 1s the matrix of the assigned intrinsic and muutal
impedances of the radiators
[E] is the unit matrix
<X> is the vector-column of the load reactances
<i1> is the vector=-column of currents in the radiators
<g> is the vector-column of the voltages induced by
the active radiator.

The solution of this problem of synthesis can te reduced

to finding the reactances <X> based on the gilven radiation
pattern of an array; here the currents <i> must belong to the
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set J oroviding the reactance of the impedances <X>. The appro-
Xximation to the given radiation pattern can be root-mean-square

of uniform. The problem of the root-mean-square approximation
for a linear array consists of minimizing the function

K i ~ .
(i i)« [ IF(0) - 0015 ¢ e ", (2)
. be ! ""_ .

and the uniform approximation problem, to minimizing the
function

r, z,,...'c,) . m:xIF(o)-cm))f:a,é""“f'l (3) |

The final formulation of the problem of synthesizing a reflec- i
tion array with arbitrary fixed geometry can be represented !
i

as follows: minimize T (i cees in) with respect to <i>

l’ 2’
under the condition that <i>eJ , that is, find the <I> such
that
P Ty L) o mpin Ty o L,,).} (4)
<DeJ .

I.. mathematics there is not yet an algerithm capable of
solving problem (4) in the most general form, that is, when

F(il, eeay in) is an arbitrary function, and -J is a set with
arbitrary configuration. In the case of reflection arrays,
the currents from the J must satisfy the following system of
constraints [25]:

. (5)
Re {(t,-‘gz,,ic)i,] 0, Kegz.nN ’

This article presents the results obtained using different
algorithms developed by the authors as applied to the problem
of reflection arrays.

i, i . .
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Let us assume we know certain initial values of the load im-

(o)

pendances of the dipoles <x> . Selection of the initial value

of the loads can be done with different methods:
a) First Method of Selecting Initial Loads

Let us solve problem (4) wilthout allowing for the constraints
on the currents. For this purpose 1t 1s best to set up an over-
determined system of equations that can be solved for function (2)
by the method of least squares, and for function (3), by the
Stileffel exchange method [24]. After finding the currents <i>,
which generally do not belong to the set J, let us calculate the
load impedances based on a linewise solution of system (1) and,
by eliminating the real part in thils solution, we regard them as
the initial loads.

b) Second Method of Selecting Initial Loads

Conditionally we assume that the mutual influencé between the
dipoles in the array 1s weak, that is, the matrix [Z] is a diagonal
matrix. In thils case, the currents from (1) are defined as

e 2, ‘©

The right-hand side of Eq. (6) 1s a circle on a complex plane
(25]. 1If we denote the current, which is the solution of problem
(4) without the presence of constraints (5), by <i'>, as the ini-
tiai value of the load impedances we select the value that mini-
mizes the expression

Ie:- glazrat = gin It~ A5y ],

K LJ tz....”

(7)

The solution of Eq. (7) has a simple geometrical significance
and analytically can be reduced to solving a gquadratlc equation.
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The simplest algorithm for solving the problem of synthe-
sizing an array 1n the roct-mean-square approximation is given
in [26]. The problem can be reduced to minimizing the function
Az

)“;-Z:;‘ 24, Ke{2,..N (8)

glven the system of constralnts on current (5). The algorithm
above presupposes that the matrix [Z] has an emphasized diagonal
and the current-column <i>(°) is known, which we adopt as the
zero approximatlon. The assumption that there 1s weak mutual
influence between the dipoles enables us to minimize (8) for

the k-th dipole, when there 1s the k-th constraint on system (5).
The Lagrange method as applied to thils problem leads to a system
of two equations, one being quadratic, and the other, linear.
The solution obtained in this case does not exactly satisfy
conditions (8) and (5). For a revised solution, new computa-
tional cycles are carried out. This algorithm makes it possible
to compute the arrays of a small number of dipoles quite widely
dispersed 1in space (d/A>0.1). Its advantage is the simplicity of
computations. The desire to allow for the influence of only two
adjoining dipoles leads to much more complexity of computations.
Elaborating thils concept, we now must minimize (8) for the k-th
dipole given the (k-1)-th, k-th, and (k+l)-th constraints on the
current from system (5). The Lagrange method leads to a system
of nine equations, three of which are quadratic. An incomplete
allowance for the mutual influence leads to a situation in which
the solution obtained will be 1lnexact; and Jjust as in the first
case, repeated computations will be necessary. When the mutual
influence between all dipoles is taken into account, a system of
3N equatlions must be solved, of which N are quadratic. In con-
trast to the flirst two cases examined, with an increase 1in the
number of elements, the matrix order also grows larger. Allow-
ing for mutual influence (partially or completely) leads to the
need to solve a system of nonlinear equations. Existing mathe-
matical methods enable thls problem to be solved [27].
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We present our further exposition on the example of the uni-

form synthesls of a reflection array. For the case of the root-
mean-square synthesis, the algorithm functions quite analogously;
there will be a difference only in the normalizing of the radia-
tion pattern. The problem of uniform synthesis 1s formulated in
the form of problem (4), where P(il,...,in) stands for function
(3), under the condition that the set J is defined by (5). Into
function (3) is introduced the complex normalizing coefficient C,
which must provide us with the convergence of the sequence <1>(°),
<> <1,> to the desired distribution <feJ . Physically
it signifies the possibility of adjusting the radiation of the
array to the level that 1s optimal in the sense of the uniform
proximity of two curves: the normalized given radiation pattern
F(8):

mox F(0)e1; A-[-F.F] (9)

oEN ’

and the radiation diagram of the array f(6). The magnitude of
the coefficient C is selected by solving the following auxiliary
problem for a known (calculated) current

& » mariFo)-ComSi, e/ o (10)
- "é“‘ max IF@e) -_CO(O);E,,'GM“.I

The solution of problem (10) is obvious:

C- i-[(n;u Rcf(g om.a‘nﬂc?’:{g’))-q-
» Limas Jm%o@'&nhﬁ%ﬂ

The soundness of the introduction of this coefficient follows from
the fact that the left- and right-hand members of Egq. (1) can be
multiplied by an arbitrary number. The essentials of the proposed
algorithm will consist in constructing a sequence of current dls-
tributions, each term of which has a smaller gquantity

(11
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compared with A(k'l).

To calculate the quantity A, we partition the interval of
angles on which F(8) and f(8) 1s defined with a closely spaced
net and we calculate A at the nodes of this net. Let us adopt
the calculated initial values of load impedances X&o x/. x*
and insert them into Egq. (l1). From the system of equations (1)
we calculate the current

o™ {C21 + [E100"] <as
(12)
(o)

From Eg. (11) we calculate the normalized coefficient C cor-
responding to these currents, and then the quantity A(o). In

the following text we leave unchanged all the initlal values of
the load 1mpedances of the dipoles, except for the locad impedance
of the first dipole. By varying the quantity jX, , each time we
calculate the values of <i>, 8, and A, attemptfng to find a jx:.
such that

o (%) = 8GR, (13)

To calculate the currents corresponding to each new value of the
quantity jX, generally speaking each time we must invert the matrix

{’EZ]’[ERD) . If the number of attempts for the search will be
large and the matrlix is large in size, this procedure requires
more machine time. This difficulty 1s cleared away with two
procedures:

1) The matrix ({Z]-[EXX)} corresponding to each new value of
}Xf'can be obtained not by inversion, but by correcting the
inverted matrix corresponding to the previous value of j&X,"".
The correction is carrled out using the following formulas [23].
Let
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A{CZ1 < LEICO ™ e tmi (14)
and {020 ~LEIRX =X X))o emd ™

then  mam-tm,m,

where ¢ 1;4,-,,%‘ L deoj (X~ X0)

2) The strategy of searching for jx. must be such that find-
ing ji.' occurs in the smallest number of attempts. This optimal
strategy can be developed only by relying on the form of the
function A(/X,) . PFor an arbitrary number of dipoles, the form
of this function cannot be analytically investigated, but for
two dipoles it is shown in Fig. 1. For the form of function shown
the optimal strategy was constructed using a Fibonaccl series.

The function A(jx.) was computed at the following points:

L IEY) tu Y7 S J ;
PO Ot T 250 (15)

In Eq. (15) 21{ is the k-th member of the Fibonacci series 1, 1, 2,

3, 5, 8, ...; a is the initial interval, equal to +0.05; +0.5; and

+5, which is derived in order to occupy a section to the left of

I‘X:. The condition

872> 07" (16)
(759

is a criterion for converting from one term of the sequence,\ to

another. The search for ‘f, ends when (16) is not satisfied for

any values of the parameter a=+0.05, +0.5, and #5.

To contlinue the process, we now record the value of /;\7; fcund
and carry out an analogous procedure for J/\; , Wwhere all jX:'.’... jX,:"
remain unchanged, as before. All the load impedances are selected
in this way.

We have described one cycle of the algorithm. The entire
algorithm consists of these repeatlng cycles. A quantity
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analogous to (16) is the criterion for termination. The conver-
gence of this process to <2> can be easily demonstrated if ij;

has the form shown in Fig. 1.

As an example, let us examine the synthesis of an equi-
distant reflection array if the given radiation vattern has the

1 s 0(6- FeocT. T<cos
w{HP

following form:

‘\-/-m[n-a(éx,) :

i, 0 iz iZ
Fig. 1

Considering the plane 8 as the plane of isotropiclity of the
lattice @1, we get the following results by applying the above-
described algorithm to problem (3)-(4). For N=2® and d=0.25),
when the number of points of partitioning of the interval
[0,7/2] is equal to m=19, the desired load impedances <X> in
ohms as shown in Table 1 are obtained. The assigned and the
obtained radiation patterns are presented in Fig. 2. From Fig. 2
we see that the approximation proves to be quite good if we omit
consideration of the large side lobe.

In conclusion we must note that all the algorithms provosed
in this article can be classed with local methods of analysis of
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v E multiextremal problems. To be fully convinced that the minima

found are glcbal, we must apply more complex nonlocal methods
of analysis, for example, the I. M. Gel'fand method of troughs.
Maturally, converting to nonlocal methods is necessary when the
g ' magnitude of the local minimum does not suit the investigator.
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ENERGY METHOD OF SYNTHESIZING MICROWAVE ANTENNAS

A. ¥. Chaplin

At the present time, the problem of finding the current
distribution or the distribution of the tangential field com-
pcnent in the antenna aperture for a given radiation pattern

has been formulated and solved in the literature on antenna
synthesis. It must be stated that with this formulation of <he
protlem, the antenna must be represented as the distribution of
extrinsic current (electric or magnetic) sustained by current

or voltage generators. At the same time we know that micro-
wave antennas are characterized generally by a free excitation
mode [29], in which the antenna is fed a flow of incident power
arriving from a constant power output generator. In addition,
with the usual formulation of the antenna synthesis problem,
estimates of antenna energy characteristics grow in complexity.
This is evidenced by the fact that in most studies on synthesis
the antenna power 1s calculated as the integral of the square of
the radiation pattern module with respect to fleld intensity.

We can easily show that this estimate 1s invalid above all in the
calculation of the total and reactive antenna power. EZExamined

below is a formulation of the antenna synthesis problem in which
there is an assoclation between the distribution of normalized
voltage in the far zone and in the antenna aperture.
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As a working model, we adopt a linear-array antenna with
length 22, arranged along the y-axis and irradiating a field in

the form of TM-waves with respect to the z-axis perpendicular h
. to the antenna. Let us examine the two-dimensional problem when
E the field does not depend on the x coordinate. The free-space

field is represented in the form of a superpositioning of plane
= waves; to do this, we use expressions from the monograph [13]:

E = F F(38)  ~imy-@¥AT2

e Ces,
Ep- [ e T, (1)

H‘. .‘wej;__f;(a.)x e':.vl' "'K 2 da

- -

Here it is assumed that the observation point is located above
the extrinsic sources, whose spectral density is represented
by the function F(a).

Each plane wave produces a power flow perpendicular tc the
antenna and equal to

: - )

Let us represent the quantity Hz in the form of the product of two
symmetrical cofactors
N, % %= d(a),

where

Faa) . 8., £ ()
O() = {OE prpmme () J.uc FURTe (2)
This representation is similar to the representation widely used
in microwave circuit theory for normalized voltage waves in wave-

gulides. The quantity (=) has the dimension of (watts)l/z.

As we know, the current distribution along the linear-array
antenna 1is associated with the field intensity in the far zone by
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means of a Fourier transform. In the same way, we can associate

the function ¢(y) and @@, which are the power distributions to

the exponent 1/2 along the linear-array antenna and in the far zone,
respectively.

L4
d(m) » [ P(y) '™ ay, (3a)
-4

odo [ e o™ o
Ply) aLO(a)c da (3b)

If the antenna is located in loss-free space, the values of the
function @(a) 2long the segment [-k.k] define the active radiation
power, and the values of this function at the semiinfinite segments
[-», =k] and [k,»] define the reactive energy stored in the near
field cf the antenna.

Thus, the problem of synthesizing microwave antennas can be
posed and solved as follows: we assign the functrm1¢aqgnd with
the solution of the integral Fredholm equation of the first kind
(3a) we find the function ¢(y) from which we can calculate the
distribution of the flow of complex power along the antenna. If
the function @(®y is defined along the entire = axis, to solve the
synthesis prcblem we can use the inversion formula (3b).

To solve the problem posed we can develop methods similar
to methods of solving the conventlional antenna synthesis problem:
the Fourier integral method, the method of partial radiation pat-
terns, and the A. N. Tikhonov regularization method. It must be
noted that now all energy estimates willl have an expliclt physical
meaning.

In addition to calculating the flow of complex power along
the antenna, we can find the distribution of the surface impedance
or the input impedance at each antenna point. The surface impedance
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Z(y) can be found with the formula

_Eyw), i -[."" -x" e da (4)

M, (V) 9(2! e-tuv d=
- -K"

Let us dwell cn twoc proverties of the functions ¢(® and

Liy) s =

(y) we have introduced

1. Funccion ¥ and $(y) exhibit the proverty of leccal
separaticn of power intc active and reactive at each antenna
pecint. Let us take two zlane waves with the wave numbers
%, and # : @(a)eAS(r-2), 9,-86(m-2,) . et [%|>K and [ (>«.
Let us find the conditional pcwer flow at some point ©(y,0) of

the antenna.

P ~dny imy
n, 00 4 * 42 )4—‘!-:*

*.B;“‘,;') 4 K :2’-,

cos az l ~a288 +
Wal-kT *faf-nt

+(

The power flow of two slow plane waves represented with the func-

tions @l(y) and d>2(y) remains reactive at each point on the plane

z=0.

Let |eJ<K and |@,jeX. Then we have the expressions

n(vJ 'I'r-r’.';'l f L

coslar az Boz- J
“xi- . 22,

The power flow of two fast plane waveé represented by the functions
¢;(y) and <I>2(y) remains active at each point on the plane 2=0.
But if we examine the power flow of one fast and one slow wave
I®,)¢x and |@4en , 1t proves to be complex at some point p(y,0):




”(v)'z- IAI - §lil, fsl‘

1A IBIcos[a: A-at a o(z -z.)y
e Nnloai “al-w

o 2. The transition to the normalized voltage waves %(y) signi-
fies the symmetrizing of the kernel of the integral equation, which

associates Ey(y) (or the surface magnetic flufobd) with the dis-
tribution of the surface impedance Z(y) and can be derived from

Eq. (4):

E. 00 =4 20) [H a1v-v)E, (v) o' (5)

Actually, by designating E\,(VJ/JZ(V)'@N, we bring Eg. (7) to
the form

P(v) ~ 45 f ZW Y2y H (xlv-v'l)‘P(v)dv ,

where the kernel is already symmetrical.
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DIFFRACTION OF PLANE WAVES BY AN ARBITRARY SMOOTH CONVEX BODY
AND THE KELLER METHOD OF DIFFRACTION WAVES

N. S. Orlova and Yu. I. Orlov

A shortwave asymptotic representation for an electromagnetic
field was derived in [30], which is valid in the boundary layer
near an ideally conducting surface S in the region of deep shadow
and semishadow. Using the expressions for currents at the sur-
face of a body derived in [30], in this paper the diffraction
field in the wave zone in the shadow region is determined. The
solution obtained generalizes the Keller formula [31] for the
region of shadow and 1s utilized for refining the concept of
diffraction rays (the geometrical theory of diffraction) [31].
Analogous problems in the two-dimensional case were investigated,
in particular, in the studies [33-37].

1. 3calzar Problem

Suppose that at a smooth convex surface a plane wave is
incident at U%e~*’. Let us examine the first and second boun-
dary value problems for the Helmholtz equation

‘U‘ K‘”'O,
R[U)_ .0, .
) 3

N/ ggoad7=okﬂ, (1)
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where =1, for the Dirichlet problem, and Jt-g, , for the Neumann
problem (n is the normal to the surface S).

Near the surface S the field U(P') in the shadow region can
be defined with the formulas given in [30]. In this case we use
the ccordinates of the boundary layer v,u,n (Fig. 1), where u=
= QQ,+QAR, the shortest distance between point Q on the incident
wavefront and the point PO, and '0-0:'0, , the distance along the
boundary of the geometrical shadow (Ql is the initial reference
point), and n=P'P,, the distance along the normal F, (u ,®) to
the surface S, whose equation is Faf(«.,¥)., The system of coor-
dinates u, v on S is semigeodetic; in this case, the first prin-
cipal quadratic form of the surface is of the form

ds®s du's A (4D) dv® , where (_g_”..) -h‘ ( %E; ) = 1.

To define the field in the shadow region far removed from
the surface let us use Green's formula [38]., with can be written
approximately as follows, with reference to the results in [39]:

U= i—f Ui?‘_.:i.)} . (2)

where ReF-E(u,®)! , and the integration 1s performed over the
shadow part S‘c of surface S. Here and everywhere in the following
text the first (second) row in the double formulas applies to the
Dirichlet (Neumann) problem.

The expressions for the quantities %"-’L and Us, which appear
in Egqs. (2) can can be called the "currents" I, follow from the
boundary layer formulas given in [30] when m=0:

. r')f 2),
i (el 51

where £%(Z) and g*(Z) are functions complexly adjoint to the

(3)
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Foch functions [40]

' iZe
4 [ 4 . izt
O R[S, 94T S o
/ l'” % lr W, (¢) “ s
Z.llm.g‘& M.{?I} >4 ’
0 is the radius of curvature of a geodetic (ray), and v=const;
in Eq. (3) and in the following treatment

hyoholB PapE) ana u,eu(Q) h, k(@)
ﬁa-f(Q)(Fig. 1). The region of applicability for Egs. (3) for
currents 1s the region of shadow and semishadow, all the way to
merger with geometrical optics formulas. By inserting (3) into
(2), when kR>>1 we get

_ 5. .
o4 B E 1 a0

where 3;-ﬁ77 s and A is the reglon of variation of u and v corres-

ponding to the shadow part of the surface ST'

The double integral in (4) we calculate with the stationary
phase method. Here the classical stationary phase method [39]
turns out to be inapplicable. So first the interior integral in
v 1s computed asymptotically, and then the refined stationary phase
method is applied to the resulting integral in u [37]. As a re-
sult we get the following expressions for the field in the shadow
region at large enough dlstances from the surface S (kRO>>l).

e Wl pte e,

~% A%
where f (ZO) and g (Zo) are functions complexly adjoint to the
Foch functions [37,40,41]

A F . A oF "
'f(lv)."ﬂ'{‘% a’fﬁﬁd‘. 9(1.).&{‘&4 v' )t

Ry 1s the length of the tangent PP, g.p(y, w) » h s hg @
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q,,v, are the coordinates of the separation point of the
diffraction ray v.ysconst, Z.-f,:’_"(u.'%)ﬁ'(qq)du. .
(&2,
Egs. (5) are a generalization of Keller'sﬂgeometrical dif-
fraction formulas, since they are valld also in the semishadow
region.

Vector Problem

Let us examine the problem of the incidence of a plane elec-
tromignetic wave Eel'¢™ ,Hegalif]+A¢*F by an arbitrary, smooth
convex, ideally conducting body. The field in a boundary layer
with thickness xn$M (M{¥L)® >» 1) near the surface of the body
in the shadow reglon is determined by the equations in [30]. To
determine the field in the shadow region far from the body sur-
face let us use the equivalency theorem [13], which with refer-
ence to [39] can be approximately represented, analogously to
(2), in the form:

EF) * Gizmr ot [ [T yroe, 551 s, ()
'ﬁ(’)’é{[f'smd,{:‘lds, (7)

where Te[fHJ, is the surface density of the electric current in
the shadow part ST of the metal surface S. In accordance with
(30] we have:

-s .o . - 5
IeHE~HE- qunvtl‘.' L{/z’:qu-.-aﬁw, v (8)

Here 3.‘_.%'5- and 7,'@3]..365' are the unit vectors of the semigeodetic

. [ ]
Hops Eoy
components of the incldent field at the boundary points QO

system of coordinates u,v, where nglé¥); - P are the
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(Fig. 1), ?L and Val. are the "currents" defined by Egs. (5) in
the Dirichlet and Neumann problems, respectively.

From Egs. (6) and (7), with reference to Eq. (8), as
kR>>1, we get

Eersffen} {rat.zou#H.,,vjca.gﬁ-ds
(F)'H{FE.,_'-?-Ia mH.,UIa]-R-ds (9)

where YR AR 2—"—,’-3, . 8,-(:,3.)5’;;;&%%:’:’,. By removing the
slowly varying cofactors from under the integral sign at the
stationary point u,,v,, defined by the condition g..g_":‘i , from
Eq. (9) with reference to (2) it is not hard to find the follow-
ing expressions for the field in the shadow region at large
enough distances from the surface S (kRO>>l)

E(F)-EL U7 7l ®) * Egp U T (1, ),
H(»’)-Jﬁfé;(u.v.)E(r)J . (10)
o Hop U () ulity 0) * Hon Uy (F) Tl ),

where H ﬁEM, Enm @H.., are the normal components of the lnci-
dent f‘ield at the boundary points QO (Fig. 1), U (F) and U2(r) of
solution (5) of the Dirichlet and Neumann problems, AfUe,®) and

?,{u.,x) are the unit vectors of the principal normal and of the
binormal of the geodetic ™Recans¢ at the separation point PO of
the diffraction ray PPO.

The region of applicability of Egs. (10) is the same as in
the scalar case.
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DIFFRACTION OF A PLANE ELECTROMAGNETIC WAVE BY AN IDEALLY
CONDUCTING BODY OF REVOLUTION

N. S. Orlova

1. Let the plane electromagnetic wave

‘E‘_ Eloit™, (E:c’; . 5;?.) "aamr.fwhrow (1)

be incident on a smooth, convex surface of revolution S, whose
radil of curvature are much larger than the wavelength, and the

equation of the generatrix in a cylindrical system of coordinates
is of the form

23N or rev(s) (2)

According to [30], let us introduce near S the semigeodetic
system of coordinates v,u,n normally assoclated with it and
formed by the single-parametric family of geodetics v=const i
and the curves u=const orthogonal to it; n is the length of the ‘
segment of the normal to the surface. As we know [42], the tra-
Jectorles of the geodetic lines at a convex body of revolution
fluctuate between two parallels r=h and are governed by the
followlng equations

rung ch, - (3)

(4) ‘
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where du is an element of the length of the geodetlic, B 1s the
angle between the geodetic and the meridian, and h 1s the radius
of the smallest parallel that 1s tangent to the given geodetic.

The geodetlic lines v=const are envelope rays at the surface
issuing from the boundary points of the geodetic shadow on S
and serves as an extension of the incident rays

o K (5)

20

(£” is the unit vector of the envelope ray).

The equation of the boundary of the geometric shadow at the
surface is found by determining the common points on the surface
S and the family of planes tangent to it and parallel to the
vector of the wave normal of the incident wave k

€08 (9, - ¥ = ctg ¥’ sy, (6)

where Fg e gﬂ..‘*

By solving jointly Eqs. (3) and (5), let us determine the
parameter of the geodetic hsh (s, ,9.; XK )

|kl -'rq‘ﬁhO'lW,h‘V')l (7)
Thus, for the geodetics v=const, Eqs. (4) can be written in
the form
A e dopt '
Voo ] A iEman (h$0) (8)
.’ v
wiv| mar, (9)

where 0‘\ and &,  are determined by Eq. (6), and 4, 1is the phase
of the 1ncident fleld at the exit point of the geodetic at the
boundary of the shadow

u,‘..'--(l..o ALY (10)
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Egs. (8) and (3) are valid when ¢<9¢,, , where the angle of rota-
tion s corresponds to the tangency point of the geodetic with
the parallel r=h. When @»%, , in Eqs. (8) and (9) we must use
the partitioning of the integrals in terms of the rotation point,
with reference to the symmetry of the geodetic with respect to

P9,

As the coordinate v 1t 1is convenient to select
vliﬁ (ll)

It is not difficult to show that the curvilinear coordinates

v and u selected are orthogonal. The system of coordinates
v,u,n, generally speaking, is orthogonal only near the surface.
The Lame coefficients of the resulting semigeodetic coordinate
system, for small n, can be expressed as follows:

Rn'.' ‘o F'. 4’: l.:’. h” (12)
where .
by - 33 PR

2. Following the study [80], let us write out expressions
for the diffraction fields & and H near the surface

{Fl i %?)(f»; 30
{ief (b (%ﬂ(fﬁe“‘“”""w Vi), (13)

{ } ﬁ MYA .“,(..,.q[ {ﬁéﬂ_ﬁz’y
et - én@ A

Here Z'[:g-du, V!H‘ﬁa‘ M‘HL), JA'#%:

R, R,
P '-W 1s the radius of curvature of
the geodetlic, Rl and R2 are the principal radii of curvature S
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%1§¥9) are functions complexly adjoint to the Foch func-
tions [43]

The quantities h'm and fL,can be calculated at the exit point of
the diffraction ray from the shadow boundary. E;‘andlﬂh are
determined by the expansion of the components of the incident
field (1) with respect to the coordinates v,u,n at the shadow
boundary

E, = 8.6, + 8,Eq, Ho s VE(0ES-2,Eq), (14)

where ’ )
. 4 3in'8°costar @ . . Y o)
4, sina? 7+tgT6 cosia® * 4, ¢cos6 eawr. 1etg'Bcosay,

A , s ’p':’.

The conversion from the semigeodetic system of the coordi-
nates v,u,n to the spherical coordinates 9,¢ at the surface is
carried out based on the formulas

- - - - = - (15)
Qe 8inp-t,cup g 2@ cuss e, sng

Eqs. (13) define the field corresponding to a single dif-
fraction ray arriving at the observation point. In the simplest
case, the field in the shadow region of the body of revolution
is formed by means of two diffraction rays enveloping the surface
on opposite sides. But the ray pattern of the field depends on
the specific form of the surface and in the general case can be
quite complex. In particular, investigation of the pattern of
diffraction rays at the ellipsoid of revolution conducted as
per Eq. (8) with a numerical method shows that the number of rays
arriving at the arbitrary point P of the surface depends strongly
on the elongation of the elllpscid and on the angle of incidence
of the plane wave (Fig. 1).

Thus, calculation of the fields at each specific surface must
be preceded by the determination of the number of diffraction
rays arriving at different zones of the shadow region. The fields
of all rays are determined by Eqs. (13) and differ from each other
only by the values of the varlables u and v arriving there.
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3. The solution (13) that we derived cannot be used near
the caustics (when hv+0). In the cases when the ray pattern at
the surface has a caustiec, the solution (13) must be analytically
extended into the caustic region, for example, using the method
given in [447.

In the case of the axial incidence (8°=0) of a plane wave,
an axial caustlec always originates on the body of revolution of
arbitrary shape; to determine the field near the axial caustle
Egs. (13) can be similarly modified {45]. In this case, h=0 and
the diffraction rays are propagated along the meridians, so it
is sufficient to examine the ray pattern in the plane 'fQ,P.“n‘{
(Fig. 2). At each observation point two rays arrive, each pro-
pagating along the shortest path, and the other envelopes the
"dark pole" (z=-zmax), thereby acquiring an additional lead in
phase w/2.

As we can see from Fig. 2 and Eq. (12), for both rays we
have the expressions

hee tr, 2p20, Ny (16)

The coordinates of the rays arriving at point P from points FI and
FII can be written in the form

(f f)d“ dl-q_,chd--u,.ﬁau (17)

where um 1is the ray coordinate of the rotation point Z==2 oxe

Assuming that the following is gaye near the axlial caustic
Z'ezlmz,, [ Hou

and referring to Egs. (16) and (17) and the additional lead in

phase at the caustlc, let us represent the composite fleld near

the axial caustic as follows:

o, (Mo )" 25 1 (2, v 42D
G
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Using the familiar expansion of Bessel functions [46]

J,(x) = Vr;l.cas’x- . )4'0(})] (19)

from Eq. (18) we get

(Eerl e Ve, (228 Lt

s £- “'(“M‘P"

E,JET ﬁ(-';ﬁ sz_,v{.. , (20)

e i} (xat)

Here 't; and E.'P are calculated at any point on the shadow boun-
dary. We note that ;@gﬁkl

Similarly, by referring to the mutual orientation of the
vectors 3,5,3 for the flrst and second rays, we get

5T

{g”wr“(f)(‘”-) AT
t{ -(c(v-p'ﬂ") .‘7  (x MJ) : )

(& W(f )" "“'“‘;""’ (21)
H@”' 9¥(Z~V{-°-Dw,#- A V(?...Y{"l)lm]

ov

We note that Egs. (20) and (21), 1n contrast to Egs. (13),
describe the total field, considering all the rays focussing
on the axial caustic.

The expressions we have derived for the diffraction field
of the plane wave are valid near the surface of the body of
revolution with an arbitrary shape; in the case of a sphere
they wholly coincide with the asymptotic exact solution [47],
including the caustic reglon. The resulting solution makes it

75




possible, by employlng the reciprocity theorem, to derive formulas
for calculating the radiatioh characteristics of arbitrarily ori-
ented electric and magnetic dipoles located near the surface of
the body.

-

T TR T

76




PART 3

RECORDING ELECTROMAGNETIC RADIATION
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POSSIBLE USE OF THE MAGNETIC MOMENT OF SEMICONDUCTOR
PLASMA ELECTRONS FOR RECORDING CARBON DIOXIDE LASER RADIATION

G. D. Lobov, V. V. Shtykov, and Ye, I. Gratslanskaya

The presence of a nonlinear effect in a semiconductor caused
by the magnetic moment of conduction zone electrons was indicated
in [48]. Also made in this publication were estimates of the
magnitude of this effect in the millimeter wave band. In prin-
ciple, a frequency converter based on this effect in the infrared
band can be constructed using semiconductors with small effective
mass. From the results obtained in [48] it follows that to inten-
sify thls nonlinear effect, the product of the frequency of the

effective radiation and the pulse relaxation time Wy of the semi-
conductor must be larger than unity. This condition can be met in
the infrared band at room temperature; evidently this makes it
possible to solve the problem of the uncooled low-~-inertia detector
in this band.

In applications, directing the permanent magnetic field parallel
to the propagation of electromagnetic waves may prove to be more
convenient. So in this paper, in contrast to [48], magnetization
will be found in the longltudinal propagation of plane electromag-
netic waves in a semiconductor plasma. Since 1n actual frequency
converters the semiconductor has finite dimensions, when we set

out to find magnetization we take into account reflections from
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the interface. Let the semicpnductor occupy a half-space.that
has the boundary z=0, and let electromagnetic waves propagate

along the z-axis. Then the solution of the differentlal equa-
tion of magnetization presented in [48], with reference to the
transmission coefficient T of the electromagnetic waves in the
semiconductor, will be of the form

M g T e ol explilpte- ), (1)

where W 3wew are the constants of propagation at
27n, o) 252 4)
e Al A( the corresponding frequencies

'5é£$y 1s the plasma frequency of the semi-

“* conductor

% 1s the relaxation time of a pulse in
the semiconductor

m* is the effective mass of the conduc-

tion zone electron of the semiconductor

& is the dielectric constant of the
semiconductor lattice

LY is the index of refraction of_ the semi-
conductor at the given frequency

x,4) is the attenuation coefficient at the

given frequency

In Eq. (1) we take into account the contribution to the mag-
netization of the semiconductor of only the wave for which the
direction of rotation of the electric field intensity vector coin-
cldes with the direction of rotation of electrons in the semicon-
ductor.

Using the results obtained in [42], the square of the modulus
of the transmisslon coefficient can be represented in the form

Itl"’l ["ﬁz [ it !ruurr'.nu'.n?m*‘.!r! +

.0'6;

(2)
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E where ga4-2 'V-gi.' ,"5”.‘ ’

“%'ggr is the cyclotron frequency of the semicon-
ductor
With respect to Eq. (2), in Eq. (1) we 1solate the part dependent
on the concentration of the conductlon zone electrons mg/wz, the
pulse relaxation time wT,, and the magnetic field intensity (wH/w)

N(m ‘mw Llgl_ p, g (upF(,,.,wg,a') (3)

where

Presented 1n Figs. 1 and 2 are the above-indicated functions.

e e

From Fig. 1 we see that the maximum value of M2(m2) rapidly rises

when wro>3. From Fig. 2 can be foung tge value of the permanent

magnetic field for certailn w4 and wo/w . From a comparison of

Figs. 1 and 2, it follows that to obtain the maximum value of ]
M2(w2) when w10>3, the required magnetic field is approximately

equal to 1ts value at the point of cyclotron resonance.

The variable part of the magnetization of the semiconductor
can be recorded with an induction coil enclosing the semiconductor
and located perpendicular to the external magnetic field. Let us
estimate the parameters of the frequency converter at A=10.6 micro-
meters, in which a semiinfinite, longitudinally magnetized plasma i
cylinder with radius R>>X is used. i

The above-named condition allows us to use the results derived
above in making estimates of the converter parameters. If the re-
cording induction coll directly surrounds the semiconductor cylin-
der, the open=-circuit voltage at coil ends is [50]

CUR

"

(ULl @ @yt S Niwma Pl (4) .
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where §_, 1s the cross sectional area of a coll turn and Nome

is the number of coil turns., If the laser beam 1lluminates the
entire plasma cylinder cross section, then Eq. (4), with reference
to Eq. (3) takes on the form

10+ eSealtelor {7 - £ (5)

In [5] 1t 1is considered that the intensity of electromagnetic

waves incident at the interface is P-js‘s » where W*\‘% is the
characteristic impedance in vacuo, and S is the beam cross sectional
area.

Estimate calculations showed that at the output of the fre-
guency converter at A=10.6 micrometers (CO2 laser), for InSb with
m¥=1,52+10732 kg, ep=l6, wt,=10, the latter corresponds to
u=0.6 m2/V-s [51], when P,=P,=1 W and to the coil turn number
Norm =10; the open-circuit voltage 1s approximately 5 microvolts
and 1is attalned for a magnetic fileld intensity of 160,000 gauss.

To lower the magnetic field intensity, semiconductors, with a lower
effective mass can be used. If an HgTe semiconductor or a ternary
compound Cdngl_xTe is used as the working material in the above-
described converter, with an effective conduction zone electron
mass of 0.00Bme, the open-circult voltage for these parameters will
be approximately 26 microvolts, for a mobility u=2.5 m2/V-sec, and
a magnetic field intensity of 31.6 kilogauss.

Thus, utilizing Cdngl_xTe in this converter is preferred over
InSb. Syntheslizing semiconductor compounds with an even lower ef-
fective mass makes 1t possible to substantially lower the required
magnetic fleld and to bulld detectors for A=10.06 micrometers with
magnetic flelds realistically attainable at the present time without
cooling.
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CONVERSION OF CO2 LASER RADIATION TO MILLIMETER BAND i

RADIATION USING THE MAGNETIC MOMENT OF CONDUCTION ZONE i
ELECTRONS OF SEMICONDUCTORS ]

| { V. V. Shtykov

The problem of the conversion of infrared radiation

frequency in a semiconductor placed in a constant magnetic field
o is examined in [113]. An induction coil is suggested in recor-
ding the variable magnetic mcment, varying with time with the
difference frequency m3. But there is some interest in investi-
gating phenomena when infrared radiation is converted to milli-
meter band radiation, since the frequency w3 can be 1010 to lOll
hertz (see equation for the magnetization vector M in [48]). The
high value of the difference frequency precludes the use of an
induction coil iIn recording the variable part of M. 1In this case
a system suiltable for microwave applications must be used; in
the system an electromagnetic wave with the frequency m3 will be

excited.

Let us examine, by way of example, a variant of an infrared
radiation frequency converter in which a rectangular metal wave- i
gulde 1s used (see Fig. 1).

To solve the problem of wave excitation in a wavegulde we will 4
assume that the nonlinearity in the semiconductor is small [48].
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This allows us to regard the magnitude of the variable part of
the vector M as a given function and set it in correspondence

to the outside magnetic flux with the complex amplitude

T e ja, o, M) (1)
The complex amplitude of the variable part lﬁ(wg , Which appears
in Eq. (1), was found for two limiting cases of the propagation
of electromagnetic waves with frequencies ml and W, with respect
£o the vector of the constant magnetic fileld Hy in [48] and [113].

From the results of these studies it follows that 1if the
principal waves are traveling waves, then-M@qg is also a traveling
wave, This circumstance imposes a number of features on the con-
version of infrared radiation to a millimeter band wave., It turns

gy g T

out, for example, that when several phase relationships are satis-

fied, waves from individual regions of the semiconductor may be

added together; this may lead to a larger conversion coefficient.

This phenomenon 1s an analog of phenomena that are discussed in

studies on nonlinear optics [54]. 4

If we consider that the component Nh(uﬁ) parallel to the field

HO has a maximum magnitude, and that for the most efficient wave
excitation the vector 5' must be parallel to the vector H of the
excited wave [10], HO must be oriented parallel to H. When the
principal type of oscillations in a rectangular waveguide is used,
the last-named condition can be satisfled by orienting HO either
perpendicular to the narrow wall of the wavegulde or along 1ts
longitudinal axis. If also, as in [113], we consider the case of

longitudinal propagation of the principal waves, the variant shown |
in FPig. 1 makes 1t possible to use longer wavegulde specimens.

By employing the method outlined in [10] and Eq. (1), we can
find the complex amplitude of the electric field at the wavegulde
center 1n the cross section z=L

oty g it €™ Pt ey (2)
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. In deriving Eq. (2) we neglected the effect of the semiconductor
wafer for waves 1n the wavegulde, since a>>A. In the expression
derived the attenuation of waves in the wavegulde was allowed for
by introducing the complex longitudinal wave number h=h'=jh".

If waves with circular polarization propagate in the semicon-
ductor, the direction of rotation of vector E of the waves coin-
ciding with the direction of electron spin, then M.(w,) can be re-
presented in the form .

M, ) « W exp Cj (i)
Assuming that D./Izo does not depend on x and y, by performing inte-

gration in Eq. (2) wilth respect to z from 0 to L, we get
: w, ﬁ.f > v-elilhL] -
E.(U..L) &= al m.AB r'_r.o.h EXP“L)

The dependence of the fileld éxO on the length of the wave interac-
tion region can be described with a function conveniently repre-
sented in the complex plane (see Fig. 1), 1f we transform it to
the form

(L) exp "—,,'(?) -exp[;jv-'-‘ﬁ!‘-v] (3)
by introducing the parameter %e(p,-S,-h)l 2axl .

From Fig. 1 it follows that when &,es,<ax , £(L) is oscil=-
latory, and when o&,»&,>aK , the oscillations are weakly manifested.
Emphasis 1is given to the case ’,-}.—h’-o « In this case, f£(L) is a
real variable. This regime corresponds to the conditlon of phase
matching, discussed in studies on nonlinear optics.

From Flg. 1 it follows that the deviation from this regime is
not large when e e&,3axX . When this condition is satisfied,

f(U) = exp(-hL) - expF(, +ei,) L] (4)

Eq. (4) attains a maximum value when

. /]
h Ln-%_%-. where Zegeg




porlbe e

A

y
£8)

fant ~.

i

Fig. 1

0¢
0

i, ..

Fia)

]

>

w [ ®

~ e

2

Fig.

86




il i

in thls case attains a maximum value, equal

The field amplitude Ex

0
to
. TwoMe ne -an FLE)
En(“’:“’n) 'j %M”AB;‘T’L“-!' ‘
where
Fy=2™

Shown in Fig. 2 are h‘L_ and F(Z) as functions of the para-
meter Z. From the figure it follows that it is best to function

when ;-"'“‘—:‘qg s which corresponds to the length L,<-£-’; .
Corresponding to the value E g found when X,¥&ex 15 the in-
tensity of waves with a difference frequency equal to

Plunil,) = sl i, | e -F @)

Using the expression from D;[zO obtained in [113] and considering

6;‘?'-&'077.'.2“/7. » where o = E 6w T, L(w-)'tl+¢]" 1is an element
of the conductivity tensor; when h'>>h", the expression for
P(w3;Lm) can be represented in the form

2Webe p o FYz) )
P(w‘;L,)'mﬁrP,, (. (53
Here Pl and P2 are the intensities of the principal waves in the

crystal, Be is electron mobility, and WB is the characteristic
impedance of the waveguide.

Let us estimate the intensity of difference~frequency waves
when radiation from a CO2 laser (w®¢m-0" ) is converted to milli-
meter band radiation with wavelength equal to approximately 5.6
mm (see [115]). When a standard 4 millimeter waveguide is used
and with 2<0.01, the 1ntensity P(w3) is

Plw,;L,) = 0"} PR

If an InSb semiconductor crystal is used as the material, 77°K
Be can reach 70 m2/s at the temperature of liquid nitrogen. When
P1=P2=100 W, which 1s quite realistic for a CO, laser, the differ-

ence-frequency Intensity will be ‘5‘10"1O W.
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Thus, there 1s the opportunity of the experimental observa-
tion of the conversion of coherent infrared radiation to milli-

meter band radiation using the magnetlic moment of the semicon-~

ductor conduction zone electrons,
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CONVERTER OF FREQUENCY OF COHERENT INFRARED RADIATION TO THE
MICROWAVE BAND USING A WAVEGUIDE WITH AN ELECTROOPTICAL CRYSTAL

V. I. Bogatkin

The conversion of the frequency of coherent infrared radia-
tion to the microwave band can be attained by the excitation of
a waveguide filled with an electrooptical crystal with nonlinearly
polarized current at the difference (intermediate) frequency
wysw,-we induced when heterodyne waves and infrared band sig-
nals are propagated in the crystal with the frequenciles wr and
wc,'respectively [52,56].

Below is outlined a method of calculating the parameters of
these converters with reference to the structure of the fields of
all three interacting waves and losses in the crystal; additionally,
the transmission coefficient 1s calculated with respect to the ex-
periment presented in [52]. The main symbols correspond to those
adopted in [56].

The complex amplitude of the electric field of the interme-
dilate-frequency wave 1n the wavegulde can be described 1In the
form [53] & ™

E -UmEaxy)e?™
Here the function Z;émw describes the structure of the fleld of
the exclted wave type in the wavegulde cross section, and the
slowly varying amplitude c{,(n) obeys the equation
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g-it-,b a0 =< ﬁﬁ,l'{'{'m ‘f é:, ﬁ(d,)g.,g L Ixdy, (1)

where nﬂlz’Re‘[[E“/q;]idxdy (2)
is the normalized energy flow in the waveguide (neglecting the
spatial dispersion of the crystal, see [53]). Integration is
carried out over the waveguide cross section. The coefficient
o, is the attenuation coefficient with respect to the field of
the exclted wave with allowance for losses in the crystals and
in the wavegulde walls. The tensor f{a),.)describes the density of
the nonlinearly polarized current induced in the crystal when
acted on by the fields of the hetercdyne wave and of the signal
wave with the amplitudes

E.— *URE, () ¥ ana Ec. Gk, wy) e

respectively [53,54,55]. In Eq. (1), axen.-x.-%s . Equations
analogous to (1) obtain also for the amplitudes of the heterodyne
wave and of the signal wave; when combined with Eq. (1), they
describe the interaction of waves with three frequencies.

For a small transmission coefficlient of the converter with
respect to power, Eq. (1) can be solved by assuming the gquantities
{Jr. and [}c to be assigned. Considering the losses in the grystal,
we can write {(p)eU,e™ @).l  e™* , where the quantities U, and
Uco apply to some initial crystal cross section. In this casg the
solution of Eq. (1) coincides with the solution obtained from Egs.
(1) and (6) in [5], if the quantity my, in [5] is replaced with

PP _
it [ELR)E B andy (3)
and 1f K,*X, . In particular, all results applylng to the optimal
crystal length and the transmission coefflcient as a function of
the parameters (introduced in [56]) derived from analyzing the
idealized case of the interaction of plane waves are valid for
conversion in the wavegulde. The results of the width of the
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radiation pattern in the passband, obtained in [56], can also be
extended to the case of conversion in the wavegulde.

Now let us calculate the transmission coefficient of the con-
verter as applied to the experiment conducted in [52]. 1In it, the
radiation from a CO2 laser, containing oscillations at two frequen-
cles, was focussed with a long-focal length lens at the center of
a rectangular waveguide filled wlth GaAs crystal and exclted Hlo
waves. By setting the wavegulde cross-sectional dimensions equal
to a and b, with respect to the x- and y-axes, respectively, we can.
describe the fields of laser radiation in the crystal in the form

b by ROt

(4)
o - - e ol )

E 2l E ewerg-bit-Betr ”.J.'e"""
where R 1s the effective radius of the laser beam entering the
crystal in the z=0 cross section. Strictly speaking, these func-
tions cannot describe the field of waves propagating in the wave-
guide, but when R<<a,b and assuming that the geometrical optiecs is
valid for the laser radiatlion in the waveguide, they are a good
approximation. The eigenfunctions for the excited Hlo wave we can
write in the form . -
£, =, stnlE » H,,.,-&sw%‘
where wb i1s the characteristic impedance of the waveguide filled
with an isotropic GaAs crystal. To construct Eg. (1), let us write
N, according to Eq. (2)

s . ‘. . - El
"..'z‘fdv[E..,H...;dx Qﬁv’?," (5)
Let us compute the integral in Eq. (3)
FL) F 4 s - N
1"5‘ FEE e mE,[dy [ax e pr .(v.m.
o ;in %‘, )

m'#iﬁi
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-When R<<a,b, Eq. (6) can be easily computed:
Lo, e 5 2
j‘e,,,?!,z“-,mnz, (8)

By multiplying Eq. (1) by E; and inserting in 1t Egs. (5) and
(8), we get an equation for the complex amplitude of the field

E of the H wave 1n the wavegulde center

: . Y S o
gfw.E--j?mw,g;W,E,.E“e" o jene (9)

10

If by selecting the waveguide dimension a the condition Ak=0 is

satisfied and if the crystal length is small, such that we can

neglect the attenuation of all waves, then by assuming in Egq. (9)
that % =a e0 given the boundary condition El .0 we get the
solution

) L)

Eﬁ)ﬂiih“%h‘4EF£;Eu'

(10)

Considering that the power a(l') transported by the excited wave
in the z cross section is given by Eq. (5), when in place of

Eo we must substitute E(z), and alsoc that the amplitudes Ep
0
and Ec are assoclated with the powers PF and Pc of the hetero-
0 0 0
dyne wave and the signal wave within the crystal at the converter

input by the relatlonships
] :rjr 2
Ph.fgsh’ P&"W,Ee.

where wr, Wc are the characteristlc impedances of the crystal for
the corresponding waves, we get the transmission coefficlent with
respect to power when the crystal length 1is z:

(D e LR (1)

Let us compute the nonlinearity parameter m in Eq. (11l).
The components of the nonllnear polarilzatlon vector for the GaAs
crystal in the crystallographic coordinate system x',y',z' are
equal to [54,55]




* 208 . (Y] * @ .
P =24 (E E. v E. EL),
. e . . ) s .2
Pn,« * 24, (&, Ec.'.f Eco .Er.') ’
2 on * °® Y [3
Bw *2d, (E,-,. Ecr +£,p _Er,-)-
In experimental conditions, in [52] the axis <111> of the crys-
tal is directed along the y-axls of the waveguide, so the pro-

jection of the vectors of the heterodyne and signal fields onto
the axes x',y',z' will be

ke,

, nl
foEo» E.

E

e
As a result, analogous projections of polarization prove to be
aqual to each other

A, "P;:: Lo LN

Thus, the vector P,.,' 1s directed along the y-axis
B REENEERLL ] dub kL,
from which we get an expression for the parameter

me I,RI,I, '“/ﬂdo
Egq. (11) can finally be written in the form
Cr Rl o' ww,w, P Lx (12)

The numerical calculations based on Eq. (12), relying on data in
[(52] yield results that agree with those obtained in [52].
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In conclusion we present plots (Figs. 1-4) characterizing
the change in power of the intermedlate-frequency wave at the
converter output when the crystal length changes, with allowance
for losses and the mismatch.of phase velocities. The plots were
constructed on the basis of the formulas derived in Egq. (5) when
an analysis was made of the interaction of plane waves. They
were normalized along the x-axls to the optimal crystal length,
and along the y-axls, to the transmission coefficient, given an
optimal crystal length. The symbols correspond to those adopted
in [56].
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CHARACTERISTICS OF THE CONVERSION OF COHERENT INFRARED
RADIATION TO THE MICROWAVE BAND IN A RESONATOR CONTAINING
AN ELECTROOPTICAL CRYSTAL

V. I. Bogatkin

Conversion of the frequency of coherent infrared radiation
to the microwave band can be attained when an electrooptical
crystal 1s placed not only in a waveguide [52,56,115], but only
in a microwave resonator [56]. Certain properties of these con-
verters are investigated 1n this article by analysis of ideal-
ized cases. The symbols and the subscripts correspond to the
symbols and subscripts adopted in [115].

The power transmitted by nonlinearly polarized currents
with the frequency @, to the excited type of resonator oscilla-
tions 1s

e.-;nej'e;i,, av, 1

here integration 1s carried out with respect to the resonator
volume, .
57 jupn BB
(2)
is the density of the nonlinearly polarized current; E‘“-U;E,(F)
is the complex amplitude of the electric field vector c¢f the
exclted oscillations; E;(ﬁ) is the function describing the
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the spatial distribution of the field. The amplitude cofactor
U, > assuming that @, =2quals the resonance frequency of the

E resonator, is given by the expression [53]
3
4 o 0 2o o
' T q.e-z—n-—w-u”f"lfn.‘],, dV, (3)
=
;{ where
oawf. 4 =" 9w .=
W,‘T.{[(f, ow ‘."sm’Hm dw L%H.,)dv (4)

is the normalized energy of the resonator field; QL is the Q
of the loaded resonator.

By substituting Eq. (2) in Eq. (3), and then Egs. (2) and
(3) in Eq. (1), we get

o[ bt |

Eq. (5) ylelds the total power transported by the nonlinearly
polarized currents. Part of thls power is dissipated in the re-
sonator owing to the losses, and only part of it can be used in
the form of a signal iIn the load assoclated with the resonator.

We can show that the maximum power released in the load is

Foe P, &
b % 74, ,
where Qg is the Q of the unloaded resonator. Therefore i
|

P i | (B2 2B B av | (6)

Let the resonator be formed of two iInfinite planes whose

- ¢ ey e

oy

enclosed space is filled with an 1sotropic, nonlinear dlelectric i
with thickness & . Let us assume that the plane TEM wave with ‘%
field components E.U!.E.‘b."ﬁng' o l

L - .
H : H,*iLld ?;ij,“'-zm £, cosm 2, (7) I
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is excited, where z is the coordinate measured along the z-axls

perpendicular to p‘ne resonator walls; «,lexn  , n «1,2,3...
the unit vectors f; and I are perpendicular. Let us calculate
the quantity W, in.Eq. (M)

w ,fsj(g“E sin'i,2 o€ me,z)dz. 7

.—SCME [4 (8) 4

Here S is the cross-sectional area of the resonator. Physically
speaking, it 1s reascnable to calculate the power received per
unit resonator cross-sectional area, so in the following we will
™o assume~Sl to be equal to the unit area. When calcula;ing
Eq. (8), it 1s also assumed that &,and M, do not depend on
frequency near Wy,

Excitation of Currents by a Traveling Wave

We assume that plane heterodyne and signal waves of the TEM
mode propagate through the resonator along the z-axis. In this
case, we assume the resonator walls to be transparent to these
-waves. To some extent this case corresponds fo the actual situ-
ation, when signal and heterodyne beams enter and exit through
holes in the resonator walls. The wave amplitudes, with allowance
for attenuation, we write in the form s

B oLy Vet Bel fud™et™

cea’ : (9)

By inserting Eqs. (8) and (9) in Eq. (6) we get the power received
per unit resonator area:

Mpune m* S8 W, W, Mo Ml 2,2, 8)

where m.In}I’L; ool o0y ; KoK oK, ; W, W, are characteristic
impedances. ’Lb.’k» are the Poynting vectors of the correspon-

(10)

ding waves after thelr entrance into the resonator (when z=0). i

The function f is equal to the followlng expression:

dal  n al
@) [1ee - co"2e ™ cosnl] ;
}("'"‘b' @l Gat o il -n)Ts (2ak)" (1D
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Let us determine the conditions under which Egq. (11) is at a max-
Imum; in view of the complexity of function f, let us limit our-

selves to an approximate analysis. The expression in the square

brackets in the denominator of Eq. (11) has a minimum with change
in k, which is attained when

Kton!-a’ (12)
The numerator has a maximum when the term in it is positive and
Jcos x8]s4 . This requires that x-r,‘-%'q, , Where q is a positive

integer. By equating both values to k, we find that we must have
4o\ 4 et
g2 (%)n 5% )¢
in order that the denominator minimum and the maximum of the
numerator in Eq. (1l1l) coincide.

0,10

005

Fig. 1

In calculating q, 1t was assumed that %k,<¢! . From the latter
it will be clear that afnl 1s necessary in order to maximize £,
therefore g<<l1.

So, given the condition %/x, <7, we cannot carry out Eq. (12)
and gq=1 at the same time. So when k changes, the maximum of the
numerator and the minimum of the denominator of Eq. (11) do not
coineide. Further analysis shows that under condition (12) the
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value of [ exceeds by about one order of magnitude its value
when &« K,,"f . So we assume that Eq. (1ll) is at a maximum
when KK, | then we get

flal) « Ly (1- _e"")' (13)

A plot of function (13) is given in Fig. 1 (curve 1). The curve
has a maximum when

is approximately equal to 0.1.

Thus, the maximum possible transmission coefficient of the
converter under study is

o Dosuss ,
G Me Ohn =t |/ Wﬂ,.. (15)

Excitation of Currents with a Standing Wave

Let us assume that in the resonator under study the hetero-
dyne and signal waves are reflected from the internal wall when
z=f and, on propagating in the opposite direction, exit from
the resonator when z=0. Then for the heterodyne and signal waves
we Wwill have the expression

E oL [E e e - £, " eP e ri*] (16)

.{[e,, RN P e A -

The minus sign in front of the second terms takes into account
the loss of a half wave at reflection.

When computing the componentsffrf: in Eq. (6), we will
consider only the products of the first and second terms in
Egs. (16) and (17). The reJected terms correspond to the weak
interaction of the heterodyne and signal waves moving in opposite
directions. By calculating Eq. (6), we arrive at an expression
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analogous to Eq. (10):

nl-.m ﬂ%‘q_;— wr%mnﬁfc "m_"val{) (18)

where

: (ﬁl’ﬁ‘ 1,

o hg'f': 4e ™% 23"'.5“&!_40'4: o6 *Joosnt 1

Analyzing this function at the maximum, like the above analysls,
again leads to the condition of phase matching xe¥,, Here the
function fl is transformed to

fl=8- 75 0- -f",)‘

Its plot 1s given in Fig. 1 (curve 2). It attains a maximum

(20)

g

equal to 0.072 when af=2.5. The maximum transmission coefficient
in this case 1is

s (21)

By comparing Eq. (21) with Eq. (15) we discover that using
the reflected heterodyne and signal waves led to a reduction of
the transmission coefficlient by a factor of 1.4 and to an increase
in the optimal resonator length by a factor of 2. This result
1s explained by the fact that, when reflected by the resonator
wall, both waves (heterodyne and signal) change phase by .

Since Eq. (2) includes the products of wave amplitudes, the re-
flected waves will produce, near the wall, a nonlinear polariza-
tion vector in the same phase as the incident waves. The fleld
of the exclted oscillation (7) is formed by two waves moving in
opposite directlions and varying, at reflection by the wall, in
phase by n, As a result, if, for example, the heterodyne and |
signal waves moving in the positive directlon of the z-axls glve
up their energy to the Intermedlate-frequency wave moving in the
'. same direction, after reflection of all three waves the energy |
will be pumped in the opposite direction because of the disturbed é
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matching of the phases of nonlinearly polarized currents and the
electric field. =20 the convérsion efficiency suffers. The pre-
sence of losses for the heterodyne and signal waves compensates
the effect of the reverse transmission of energy, leading to an
increase in the optimal resonator length.

Let us assume that the effect of phase discontinuity at re-
lection is eliminated. 1In actual conditions this can be achleved

by making a hole in the resonator wall at z=% and positioning the
mirror reflecting the heterodyne and signal beams in a location
outside the resonator at a distance of one-=quarter intermediate-
frequency wavelength in the dielectric. When making the calcula-
tions for this case, a plus sign must be placed at the second
term, for example, in Eq. (17) (we neglect the attenuation in the
dielectric section projecting from the resonator). Then in Eq.
(18), in place of f,, the function

" (o [1- 26 kosxl e .
fonnd) S G (22)

will appear. As before, 1t will have a maximum at xex, 2qual to

l’

f;(?l); iz (l-ef")t-'zf(;al) | (23)

By comparing Egs. (23) and (13) we see that when there 1is
reflection with compensation of the half-wave loss, the optimal
resonator length 1s reduced, and the transmission coeffilcient
1s increased by a factor of 2 compared with the case of excita-
tion with a traveling wave.

We note that compensation of the half-wave loss is not re-
quired when there is excitation by TM waves (for example, in a
cylindrical resonator [56]).
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Comparison of Transmission Coefficlents in Waveguide and
Resonator Converters )

If losses in the resonator are caused only by losses in the
dielectric, we can find that

2 e
Ot 2252w, (20)

where o, is the attenuatlion coefficient of the amplitude of the

plane wave with frequency w, in the dielectric.

The maximum transmission coefficient in the case of excita-
tion with a standing wave with compensation for half-wave loss
will then be written as

G- M.U‘
A".q{dm wfwcwﬂnh (25)

We can show that the idealized wavegulde converter (examined in

Bk

[56]) with a plane wave has a transmission coefficient equal to
m‘w" ’ s
Goo * gy W W W, 1T, £, a), (26)
where f(wax) 1is a function in Eq. (12), in [56].

Let us 1nspect the ratioc

G . /

Co” Tomfmar) 27
where Cla”/d,-‘“e . When @&+f and Ak'=0, the gain (26) in the
transmission coefficlent, for a resonator, is approximately
1.5. Calculations show that the optimal resonator length in
thils case 1s also shorter than the wavegulde, by a factor of 1l.5.

From Eq. (27) 1t follows that Gﬁ can exceed GMb without

bound, if @ - 0,




RECORDING SUBMILLIMETER AND INFRARED RADIATION WITH THE
TUNNEL METAL-TO-DIELECTRIC-TO-METAL (MDM) JUNCTION

G. D. Lobov and A. N. Nenashev
Characteristics of Tunnel Current for Weak Signals

Current flowlng by tunnel penetraticn through the potential
barrier in the MDM contact is defined as follows [57,58]:

. C Ry :
L ot e (el o

here e and m are the electron charge and mass; k 1s the Boltzmann
constant;n is the Ferml energy; T 1ls temperature in degrees Kelvin;
v 1s the applied voltage; h 1s the Planck constant; Ex is the
fraction of the electron energy in the direction perpendlcular

to the potential barrier; Em i1s the maximum electron energy;
S 1s the contact area; % is the dielectrlc thickness;

Nﬁ'ﬁpﬁdlmoq-ﬂ"ﬂ is the probability of tunnel pene-

tration of an electron with energy Ex; ¢(x) is the shape of the
potential barrier; and A-lﬁ'(Zn)"‘/fv .

When T>0K, the representation of D(Ex) in the form [59]

n 2(E)e-LBec(p-E)oflp-EN-] (2)
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If {-cnr»ﬁﬁvnkr » we can neglect the third term in Eq. (2).

In {58 it 1s shown that this condition is usually satisfied

and the coefficients b and ¢ are defined by the following expres-
sions:

: y ‘ 1 ¢
6,m.
8- AJLPU); ¢ gsa [LP0 ) )
IT =he voltage eV, sinwé¢ 1s applied to an MDM system, the detected
1 13 determined by the following expression [57]:
al, -AI,,R,, 'du"}v:, (4)

Where RTY is the contact impedance for the tunnel current.

Using the representation of D(Ex) in the form of Eq. (2)
and expanding Eq. (1) in a series in terms of v, for the coeffi-
clents in Eq. (4) we get the expressions -

o f[; -4 c..oc,, =t (mn]Q,) cbg(anTe,), (5)

25 (£ b.- ceob, 558 rTe) ety
Sf;—‘r-(x Te. cosee (anTe ) Ca-sin'fion ) (6)
o Supe ﬁnﬂh)cfgcndgd}

b gin e;@a
R"' Zz-_:'? TRICy (7)

In Egqs. (5)-(7), the first digits in the subscripts at the coef-
ficients b and ¢ correspond to the following: "2" is the forward
characteristic and "1" is the reverse characteristic. The second
dilgits glve the order of the derivative of the expressions in

Eq. (3) in terms of the argument ev.

Allowing for the Effect of Mirror Image Forces

We will adopt the expression for the potential barrier with
allowance for the mirror image forces, as in [60], in the form
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Ph) - R + Vi, (8)
wsal® . ed2 -
where V‘"m P is the relative dielectric con
stant; and QT(X) is the shape c¢f the trapezoidal barrier.

Since it 1s difficult to derlve expressions for b and ¢
in final form from Eq. (3) with reference to Eq. (8), let us
derive an approximate expression, considering that A is a small
quantity. Expanding Eq. (3) in series in terms of A , after
substituting Eq. (8) in it and neglecting the terms proportional
to Az, we get

"5 A, 0y¢“)-QdAA(7¢ . 12 L
Co®C, 'A<‘$'k ¥“)+0&A[_‘4£($AT).¢'_)’

CEBL
Lol + S osxA[ wr-ot . 4, o
4mdue fd‘ paresat, £,
urt - A o 4 2508, —*—'%”z']
- B %[L&‘ "v%:: g1,

%ok Yok
e’ EB (X o9
.Q "a OI-; A""% + 3% +

| L3, ),
v "[&g' a%‘.g '?a“ l".!* .
¢;-q;3ﬁb‘%w 5499, o;% .tﬂ 'rgj

Here
Y'u!'-z};— -2; l-!v"x 4‘? %-9,;
‘:G"ﬁég_vfy fa° Ch,

The coefficients for the corresponding trapezoidal barrier are
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Fig. 1.

(1) Contact temperature 0°K
(2) Contact temperature 300°K

Shcwn in Flg. 1 (1) 1s the rectified voltage as a function of
the dielectric thickness, derived from Eqs. (4)-(10). From the
functions shown it 1s clear that the effect of the mirror image
forces 1s quite large and even when €<8, a signal with elther
positive or negative polarity can be obtained.

Allowing for the Thermionic Emission Current

If the contact temperature of an MDM is higher than 0°K,
within the metal there willl be electrons whose energy is larger
than the work yleld function ¢. On leaving the metal, these
electrons produce the thermionic emission current [61]
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I, s4sh'mex'T'SCexp (g?) - exp(- g’f)] .
,"' ¢ln
«I, Coxp (F) - exp (-3F)],

where ¢lm and ¢2m are the potential barrier maxima in metals over
the Fermil levels.

If the voltage v 1s applied between the electrons, then

Pim PtV
and
I, -I.oxp(-,%‘r')[l-cxp(-s-’-)] (11)

By defining ®1m analogous to [61] for an electrode with a smaller
work function, negatively charged, we find that [61]

. /]
9,.+ %, - ev-{alv6 + elp0-eope L) (12)

£ the electrode with a larger work function 1s negatively charged,
then

. %
?.+9- (n[not((n 90(")3:"{‘] (13)
By expanding Eq. (11) in series in v, using Egs. (12) and (13),

we will have the following expression for the rectified voltage
due to thermionic emisslon

%
8V, «al R - Sli-(wieraw) v, (14)
where
A® ' " otseela®)™

By representing AI" and AI; as current generators with internal
impedance Ry and Ry, for the total voltage at the contact
(R,MR,, %R, ) we get the expression

L _R R
a V‘ ' R"‘k'”‘v". Rey* ". V,,
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Shown in Fig. 1 (2) are the results of calculation based on
Eq. (16) with the involvement of Eqs. (4), (7), (14), and (15)
for the contact temperature T=300°K. From the figure it 1s clear

that up to a certaln dielectric thlckness the effect of temperature
is small. But when the dilelectric thickness 1s Iincreased, corres-
ponding to an increase in contact impedance, a second change in

the polarity of the rectified voltage 1s possible.

Experimental Results

The experiments were conducted with a point contact between
a 15 micrometer tungsten wire and an aluminum base coated with
a natural oxide layer. The tungsten wire was sharpened electro-
lytically and the tip was monitored with a microscope. The mech-
anical system made 1t possible to finely regulate the wire pressure
on the base, by varying the thickness of the dielectric film. The
relative changes in the dilelectric thickness were monitored by the
change in the contact at direct current. The following device was
used as supplles of microwave oscillations: a klystron operating
in the 5 mm range, and a 002 laser. In both cases amplitude modu-
lation of the radiation was employed. In the experimental part of
the study, the magnitude and shape of detected pulses were investi-
gated as a function of dielectric film thickness.

Shown in Fig. 2 1s the signal magnitude as a characteristic
function of contact impedance on exposure to radiation with A=5 mm.
As we can see 1in the flgure presented, the polarity of the detected
signal varies by a factor of 2. 1In accordance with the theoretical
assumptions elaborated above, thls function can be accounted for by
the effect of mirror image forces for small film thicknesses (small
contact impedances) and by the presence of thermionic emission,
which must be taken into account for high contact impedances (large
film thicknesses). When this MDM contact 1s irradiated with radia-
tion with A=10.6 micrometers, the signal polarity was observed to

vary only for small contact impedances. Evidently, the absence cf
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change in polarity for large contact 1impedances can be accounted
for by a reduction in the effect of the thermionic emission current

when the wavelength 1s shortened.

ol A #42 m]
mv Ps§  minj

Since the time constant of the RC junction depends strongly
on the dielectric film thickness, as to be expected, for small
contact impedances the rise time of the detected pulse front was
small (less than 10"7 s). As the contact impedance was increased,
thls time rose to 10'4 to 10"3 s. These functions were analogous

for both cases of irradiation.
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the increase in attenuation and the need to reduce the trans-

CALCULATION OF MULTILAYER DIELECTRIC WAVEGUIDE
G. D. Rozhkov, A. S. Belanov, and V. F. Vzyatyshev
Use of Dielectric Waveguides in Submillimeter Wave Band |

Several factors at present impede the broad application of
dlelectric waveguldes in the submillimeter wave band. Of these,

verse dimensions of dielectric waveguides iIn order to retain
the single wave mode are leading barriers.

Attenuation in dielectric waveguldes, although slower than
in hollow metal waveguldes, intensifles with shortening of the
wavelength. Given existing materials, with consideration of
losseés of the order of 2-10™"
it reaches a value of 6-10 dB/m, somewhere on the boundary between
the millimeter and the submillimeter bands.

, for single wavelength waveguides!

Accordingly, in order to employ dielectric waveguides 1n
the submillimeter band, first of all a considerable reduction
in attenuation must be attalned in these wavegulides. One possible '
way of solving this problem consists of using dlelectric waveguldes §f
made of special materlals. In fact, because of features of the i

1
This refers to dielectric waveguldes with considerable delay,
which can be attained by bends and twists.
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mechanism of propagation in dielectric waveguides [62], thermal

losses in the wavegulde material is the maln cause of attenua-
tion, so that attenuvation is proportional to the material loss

angle.

Is there a possibility of reducing the loss angle of mater-
ials in the millimeter and submillimeter bands? Specialists on
electrical propertlies of dielecwrics believe that these possibi-
lities undoubtedly exist [63]. As early as 1964, polyethylene
with tan 6=2.7.10-5 at the frequency of 55.2 GHz [64] was pre-
pared. But 1f this loss angle persists up to the frequency
300 GHz, dielectric waveguldes made of this material would have

an attenuation of about 1 dB/m at a wavelength of 1 mm.

A T T

Of late there have been reports about studies conducted by
several British companies aimed at finding special materials for
dielectric waveguldes exhibiting much lower losses in the sub-
millimeter band than known materials. The first achievements
in this direction are reported in [65].

But even if materlals with loss losses were prepared, the
difficulties involved with the small cross-sectional dimensions
will remain. These dielectric waveguldes will be difficult to
fabricate with the necessary tolerances complied with. In addi-
tion, for small dimensions of the dielectric waveguides the
mating of wavegulde leads of 1Individual assemblies when devices
are constructed of these will be difficult.

Specific difficulties also stem from the fact that when any
external objects are brought close to dielectric waveguldes, for
reinforcement, for example, an external electromagnetic fleld of
the dielectric waveguide will be excited and additional losses and 4
radiation will appear. Satisfactory solutions to the problem of 1
reinforcement have been found in the millimeter band by means of
members made of foamed materials, and also with metal members.
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In the submillimeter band, members made of foamed materials can
become unsultable because of the commensurability of their pore
size and the wavelength, while ohmic losses ilncrease drastically
in the metal reinforcement members.

Since dielectric waveguides as such, especially when made of
polymeric materlals, exhibit low rigidity and become very diffi-
cult in imparting mechanical stiffness to devices on the dielec-
tric waveguides, or the stability of the mutual arrangement of
the dielectric waveguides in sections with space coupling.

It is known [66] that retaining the single wavelength mode
requires that in the dielectric waveguide fhe so=-called reduced
dimension

not exceed some value that is critical for the higher wavelength
types. From Egq. (1) 1t follows that the physical dimension of
the dielectric waveguide d can be increased if the dielectric
constant of the dielectric waveguide material € is made smaller.
Infortunately, the minimum value of € of known homogeneous solid
dielectrics 1s close to 2. But using porous materials of the
foamed polystyrene type 1is hampered owing to the need to produce
pores with a diameter much less than the wavelength, and also
because the latter are not rigid enough.

However, there is another possibillity of increasing the
transverse dimenslons cf the dlelectric waveguldes. It consists
of increasing the dlelectric constant of the external medium e2
in Eq. (1). In practlice, this corresponds to the transition

to a multilayer dielectric waveguide.
Multilayer Dielectric Waveguldes

A rod of a material wilth €4 in a massive homogeneous shell
of material with €5 1s the simplest example of this kind of
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of dielectric waveguldes. If this dielectric waveguide is con-
structed, for example, of polyethylene (al=2.28) in a teflon
Jjacket (e2=2.08), the transverse dimensions of the rod jacket
can be increased by roughly threefold compared with the case
of locating it in air (e2=l).

When a multilayer dlelectric wavegulde 1s used, it is also
easy to solve the reinforcement problem, since the fleld in the
jacket rapidly fades with increasing distance from the rod. The
mating problem is also eased. However, 1f the jacket surrounds
the dielectric waveguide core on all sides, access to the exter-
B nal field of the dielectric waveguide is impeded, as 1s the
: adjustment of the parameters of devices with space coupling.

We must not forget that, in addition to the useful effect,
the increase in the transverse dimensions of the guide rod and
the field region, the directlonal properties are degraded in the
dielectric wavegulde Jjacket. They can be characterized by the
delay factor %2+ with respect to the external medium, which cannot
be larger than the quantity 3,,-;@3-4 > and in the single wave-
length mode generally 1t cannot exceed the quantity },.' ?,,,/2 .
For example, in the above-discussed variant of a polyethylene-
teflon dielectric wavegulde 36 3,"2%.

- o

The poor directional properties of the multilayer dielectric
wavegulde will be exhibited in that radiation at the bent sections ‘
will be induced even when the radiil of curvature are very large. ;
In thils case, the most significant fact may be that the total |
(for radiation and thermal) angular attenuation for a section J
bent with the radius R

Fge =%, R, (2)
as shown in [66] cannot be smaller than some minimum quantity
Komnu , attained when there 1s an optimal bending radius R.,,,,,_.
Let us evaluate these quantities.
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For angular attenuation that arises due to radiation in
dB/rad, from [66,67] we have
’
o, *55R 3, exp (-«‘JR';'”)'. (3)

where 3 is the delay of a wave with respect to the medium with
€2
R Gﬁ,is the relatlve radius of bending in wavelengths in the
ambient medium A,s 4\/,,1;

For thermal attenuation (in dB/unit of length), from [66]
we can write

oo S LB tgim, vty )

> are the loss angles in the medla with el and 82;
kl and k2 are the structural attenuation coefflcients. In our
case, \/572.-4 ; here, x,+n, «{ independently of the shape of

the waveguilide cross section and independently of its dimensions.

where 61 and §

If we further set 4 w«§, =6 , relation (4) becomes

- 2729
o = A, L6 (5)

By substituting Egs. (3) and (5) in Eq. (2) and differentia-
ting with respect to R, for R__ we get

¢ -3
R 20088 3, 'y, (6)
where y 1s a root of the equation
(y-1)e” -guar3;'4g8 ‘v
By substituting Egs. (é) and (7) in Eq. (2), we have
i“.,.., . zzzg‘,skm:*f' (8)
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The quantities R:, (Fig. a) and Hggpmm (Fig. b) as func-
tions of }; are presented in the plots in Fig. 1. Fro? the plots
we see that, gilven the existing materials (tan 8=2°10" '), the
minimum losses 1in bending become unacceptably large even when

J<92 (larger than 2 dB/90°). Here the optimal radius of bend-
ing 1s about 220)\2 and is obviously applicable only in the short-
wave part of the submillimeter band (when A=0.3 mm and €2=2.08,
R;“;us mm) .

Bending losses can be reduced considerably when tan § 1s

- made smaller. Thus, when tan 6=5-10'7, even the gquantity
3,-4340" is applicable, which corresponds to ev/e‘zf,of and
makes 1t possible to 1lncrease the transverse dimensions by about
tenfold compared with the dielectric waveguide 1In air. But the
bending radii required in this case (Ré=8-103) obviously are
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unacceptable through the submillimeter band (even when A=0.1 mm
and €=2.08, R, =540 mm).

Thus, by applylng the simplest variant of a multilayer dielec-
tric wavegulde in a situation when it must be subjected to bends,
a substantial (by an order of magnitude) gain can be attained in
the transverse dimenslions only in the optical and iIn the near
infrared regions, and even then under the condiltion that the loss
angle of the materials will be not higher than 10~6 to 1077.

The transition to the multilayer dielectric waveéuide with
a heterogeneous jacket opens another possibility of controlling
wavegulde parameters. By varying the dimensions of the indivi-
dual reglons of the jacket and the parameters of their materials,
we can vary the properties of the dlelectric wavegulde over wide
limits and achleve the combination of materials that cannot be
achieved with a dielectric waveguide with a homogeneous jacket.
Let us refer to this kind of multilayer dielectric waveguide with
a heterogeneous jacket as a "composite" type.

"Composlte" Dielectric Waveguldes

A composite dielectric wavegulde is a rod made of a material
with el>e >e3, abuttling on several sides a material with €5 and
in the remaining sides, with a medium that has 63, for example,
with air. Some examples of these dielectric waveguldes are
satlisfactorily described wilth models shown cross-sectionally in
Fig. 2.

As will be shown below, the dimensions of the rod of this
kind of dilelectric waveguide, when the single wavelength mode is
retalned, can be nearly as large as the rod dimensions for a homo=-
geneous Jacket with €ye On the other hand, when elsl, this kind
of dlelectric wavegulide has a free access to the external fleld.
But the feature of the behavior of the composite dlelectric
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waveguide in curved sections is the most attractive. Radiation

from a bend of this dielectric wavegulde must depend on the direc-
tion of the bend. In this case it can be expected that radiation
from a bend such that the free slide of the rod is the external
side 1s determined by the delay factor 7, with respect to a medium
with 83. Then the dimensions of this Send can be considerably
less than for a dielectric waveguide in a homogeneous jacket with

82.

Unfortunately, a rigorous calculation of the characteristics
of the composite dlelectric waveguides 1is exceptionally cumbersome.
Because of additional interfaces, this calculation must be much
more complicated than the calculation of a rectangular dielectric
waveguide with a homogeneous jacket., The so-called asymmetric
plane dilelectric wavegulde, a dielectric layer with €15 @ thickness
30
and on the other, €55 1s a relatively simple model satisfactorily
describing this dielectric waveguide when &»a.

2a, and whose-medium on one side has the dielectric constant ¢

'gl & 'QQQ | 3 §§5
y \ A\ Y
2 AR AN

i A iz

Fig. 2

Analysis of the asymmetric plane dielectric wavegulde 1is re-
ported by the studies [68,69]. We carried out a numerical solu-
tlon of the characteristic equation and calculated the wave numbers,
the constant of propagation, the effective field dimensions on both
sides of the wafer, and the structural attenuation coefficients due
to losses in the wafer materlal and in the adjacent media for the
waves Hl, H2, H3, and El’ E2, E3, and the followlng parametric
ratios:
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s,.’l,s; ‘.F‘.,‘ “lljf,o"i.
5, -2'%3 E’ o]; 51-13 10053 1.3; and 2. 08 5
=39 &eI; &,=1; 1,06 and 2.08 over a

wide range of values of the reduced wafer thickness.

: Lacking the possibility of presenting all the results in

7 this present study, we give just the dispersion characteristics
for the case el=2.28 (polyethylene); e3=1; 52=2.O8 (teflon).
They are noted with the symbol e in the plots in Figs. 3 and 4.
The upper curves correspond to the El wave in Fig. a and to the
Hl wave In Flg. b, and the lower curves, to the E2 and H2 waves.
The quantity U in the plots, the delay factor of the wave with
respect to the medium wilth 53, is assoclated wilth the earlier

¥ discussed quantity }, by the relationship
r
h
i D e
AF =~ S U ALA (9)
As can be seen from the plots, the quantity U satisfies the in-
equalities 4
ﬁ:tvcﬂz (10)

here executing the leftmost equality in Eq. (10) corresponds to
the critical frequency, and of the rightmost equallty, to infi-
nitely large frequencies. The physical meaning of the leftmost
inequality in Egq. (10) corresponds to the case when the wave field
in a medium with €5 decays exponentlally with increasing distance
from the guide rod with el; when 1t 1s not satisfied, the fleld in
a medium with €, will taken on the form of plane waves propagating
at some angle to the z-axls and entraining energy from the gulde

rod. q
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Relative Dimensions and Band Dimensions of an Asymmetric
Plane Dlelectric Waveguide

Analysls of the critical conditions for the nearest highest
wave type shows that the wafer thickness, at parameters character-
istics of the curves in Figs. 3 and 4, can be chosen at values
that are larger by a factor of 3.5 to 3.6 than the thickness of
the wafer in alr (el=2.28; 22=l). Interestingly, 1n the case of
a homogeneous setting (el=2.28; €2=€3=2.08) an increase in wafer
thickness of only a factor of 2.5 (by 30 percent less) 1s possible.

It is interestlng also to compare the band propertles of these
dielectric waveguides. Considering that the minimum wavelength of
the band A, corresponds to the critical conditions of the nearest
highest wave type and assuming that at the maximum wavelength, the
delay ¥, must be equal to some minimum value 32mm » for the band
overlap factor JD-A"AN_, we have

(11)

die
bR oo

Assuming in this case 3w =0.02, for the asymmetric dielectric
wavegulde we have DH =]1.67 and DE =1.58, while for the symmetric
variant DH1=1'56 andl DE1=1.u9 (91to 11 percent less).

Thus the plane asymmetric dielectric waveguide will exceed
the symmetric variant both with respect to the allowable trans-
verse dimensions and wlth respect to the width of the working band.

Possibilities of Approximate Calculation

To calculate the models in Filg. 2 that are closer to the actual
situation, we can employ an approximate approach filrst described by
V. Shlosser in [70] and widely used by Ye. Markatili in [73]. It
is described in detaill also in the review [72]. This approach is
based on the assumption that the fields iIn the regions |[x[{sa and

lyle 8 can be described with a single trigonometric function within
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the rod and by a single exponential function outside the rod, and
with fields in the region [x[»@; . lys» 8§ need not generally interest
us. In [71] it 1is shown that thils approach for small €, yields

satisfactory results, especially in the region that 1s far-removed
from the critical frequency.

The characteristic equation derived by the method described
can be represented in the form

U'-U,,'-(-,;%.T): (12)

where B 1s a dimensionless internal wave number [66] of a plane
dielectric waveguide with thickness 2b made of a material with
€1 in a medium with €55 in the case of model 1, and in a medlum
with €55 in the case of model 2; and UH is the delay coefficient
(with respect to a medium with 83) of the above-examined plane
asymmetric dielectric wavegulde.

The results of calculating the delay with respect to Eq. (12)
for dielectric waveguldes with different b/a ratlios are presented
in Figs. 2 and 4.

The symbols for both wave types, as in [72], are as follows:
the letter symbol [E] gives the field (in this case, electric),
with respect to which the polarization direction 1s estimated;
the letter superscript (x or y) gives the coordinate axisz in
whose direction the indilcated fleld is generally polarized; the
numerical subscripts give the number of fleld variations in the
directions of the corresponding coordinate axes.

It i1s to be expected that the accuracy of these results im-
proves as U grows larger. The values U‘ﬂ', (dashed sections of
the curves) will contradict the physlcal considerations, since
the waves traveling with a delay U<VZ; must radiate.

Estimates of the width of the working band based on c¢riterion
(11) show that 1t decreases with decrease in b/a. When b/a=2, the
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decreasa is not large and amounts to 2-7%. When b/a=0.5, model 2
is a much more advantageous model from the standpoint of band
properties.
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EXPERIMENTAL STUDY OF A COMPOSITE DIELECTRIC WAVEGUIDE
V. F. Vzyatyshev, G. D. Rozhkov, and B. A. Ryabov
Formulation of Problem

When any microwave transmission line is investigated, it is
necessary first to establish the conditions for single-wavelength
or a virtually single-wavelength cperating conditions and to study
the main characteristics (delay, attenuation, and distribution of
field) of the waves under these conditions. A method for the ex~
perimental resolution of these problems as applied to dielectric
waveguldes has been worked out (see [73,74]).

One feature of setting up experiments with a composite dlelec-
tric wavegulde consists of the fact that at the present time there
are still numerous assemblies (exciters, bends, and so on) that are
needed for known methods of measuring. So we were compelled to
work out a special method of measuring, using the minimum number
of assemblies that are simplest in a design sense.

At the first stage we set up two main goals.

1, Investigation of the dispersion characteristics of the
lower wave types.
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2. Investigation of the behavior of these waves at the bend
sections.

[ENNNAN

Fig. 1

The cross-sectlon of the wavegulide investigated is shown in
¥ig., 1. Rod 1 is made of polyethylene (el=2.28) and has the dimen-
sions 10x4.5 mm2. It 1s a rectangular PDV-12 dielectric wavegulde
that is truncated to make one of its faces planar [73]. Region 2
is made of teflon (e2=2.08) and has the dimensions 10x40 mm2.

This waveguide configuration 1s advantageous in that 1t provides
for access to the external fileld of the dielectric wavegulde from

three sides.
Dispersion Characteristics

This investigation was conducted with a dielectric resonator
and following the method described in [73,741, in the wavelength
band from 4 to 10 mm. Serving as the resonator was a sectlon of
the above-described composite dlelectric waveguide, 120 mm long,
placed between a solld and a gridded reflector. The resorator
1s excited through the gridded reflector with the open end of a
rectangular dielectric PDV-8 waveguide, with a cross section of
6.7x3.35 mm2. The back wave is branched with a balanced wave-
gulde joint on this same wavegulde.

It was found that when the exciting dielectric wavegulde is
placed opposite the midsection of the teflon plate, a large number
of resonances, partlally superimposing on each other, 1s observed.




Identiflcation of the type of these oscilllations was made
difficult owing to the high concentration of their field in the
dielectric. When the exclting dielectric waveguide is placed
opposlte the polyethylene rod, the intensity of most resonances
1s reduced, and the intensity of resonances corresponding to the
wave types we are interested in is even increased.

The longitudinal order of the resonance oscillation, N, the
number of half-waves accommodated along the resonator length L,
is determined with an electrical probe, and the resonance frequency
fo’ with a wavemeter. Delay with respect to air 1s then calculated
based on the relationship

Ue NC
az (1)

where C is the speed of light.

Polarization of the electric field of the observed oscilla-
tlons and the number of 1ts variations are determined with a thin

plate made of metallized mica.

[UEEROU Y VU

The experimental results are shown with curves marked by
clrcles in Fig. 2. Also shown there are the calculated results
obtained with the approximate method described in [118] (solid
curves 1n the upper part of the plot). The symbols for the wave
types correspond to those in [118]. Clearly, the discrepancy
of the experimental results and the calculation 1s very substan-
tial, Admittedly, the experimental waveguide (Fig. 1) differs
from the calculation models (Fig. 1 in [118]), but this difference
1s generally not taken into account in the approximate calculation
method.

The most characteristic experimental fact 1s the detection of
waves with .the delay U<VE,. This fact, which at first glance con-
tradicts the physical principles advanced in [118], 1s easily ex-
plained 1f we consider that the region with €5 has a finlte height
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{10 mm). So the waves entraining energy from the polyethylene rod

at frequencies lower than the critical frequency must be not plane

waves in an unbounded medium, but waves in the dielectric plate

(52=2.08; 2b=10 mm). The dispersion characteristics of these 1
waves are indicated with solid curves in the lower part of the

plot in Fig. 2. The symbols for these waves correspond to those

in [66]. From the plots we see that some experimental points are
below these curves, although from physical considerations it follows
that they always must be higher and can be approached only in the
eritical-frequency reglon. But this fact cannot be accepted as
proven, since the discrepance falls within the limits of experil-
mental error (about 2-10'3), the calculation (about 5-10'9), and
the dielectric constant of teflon (about 5-10-3).

Behavior of Waves at Bend Sections

The measurements were made in the wavelength band of 3.9 to
5.7 mm using the following method.
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Fig. 3a

The transmission coefficient of the waveguide line consisting
of a 1 m long section of a polyethyleﬁe PDV, with transverse dimen-
sions of 10x4.5 mm, the midsection of which can be converted, by
bringing up a rectangular teflon plate (Fig. 3a) or shaped teflon
plates (Fig. 3b), into a section of a linear or a bent composite
dielectric wavegulde and two exciters in the form of smooth wave-
guide metal tapers with a 3.6x1.8 mm2 cross section for a section
with the dimensions of 5.5x11 mm2 and a 100 mm length. The entrance
and exlt sections of the taper are turned by 90° in order for the
electric fleld in the output section to be oriented parallel to its

large side.

\\ Junetions . 8-8

Fig. 3b and 3c
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Losses in a line made up of a PDV with tapers for a wavelength
of 3.9 mm came to about 6 dB. ‘With the thermal losses in the dlelec-
tric wavegulde material and in the tapers subtracted, the losses in
excltation are about 1.2 dB per exciter. As the wavelength is made
larger, the losses are reduced. In order to reduce the relative
amplitude of the higher-type waves, special filters are inserted
near the exclters. By applying an attenuation ¢f about 5dB on the
principal wave type, the flilters serve simultaneously for decoupling
the members being measured, the generator and the detector.

It was established that the PDV bends in the plane of 1its
smaller facet with radii to 6 em for an angle to 180° do not intro-
duce additional losses of more than 0.8 dB. The losses observed
do not depend monotonically on the angle of bending. Probably they
are assoclated with the conversion to higher-type waveguide waves.

The main result of the measurements 1s the losses when shaped
teflon plates (Figs. 3b and c¢) are brought up to the bent section
of the PDV, This section 1s thus converted to a bent section of
a composite dielectric wavegulde (a bend of the kind shown in
Tig. 3b, when the material with €y is in the external side of the
bend, we call an external bend, and a bend of the Fig. 3¢ type, an
internal bend). It was found that the losses, especially in the
external bend, depend strongly on the gap between the PDV and the
plate. So measures were adopted to reduce the gap.

Since during transit through the section with the plate at
the mating of the dlelectric wavegulde with the composite dielec-
tric wavegulde there must be some conversion into both the higher-
type waves and into radiation waves, the characteristics of this
converter were measured separately. To do this, the transmission
coefficlent was plotted as a function of the distance between the
PDV and the Fig. 3a plate brought up to the PDV, so that on touch-
ing, the composite dielectric waveguide of Fig. 1 was constructed.
This function in all cases proved to be monotonic, with the addi-
tional losses not exceeding 0.5 4B, A=5.,7 mm, and 0.2 dB, A=3.9 mm.
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Additional losses in the internal bend cannot be measured
exactly because during the brihging up and pressing up of shaped
plates, the position of the PDV ends 1in the exciters and the losses
= in excltation are changed. However, it can be ensured that addi-
tional losses do not exceed 1 dB at the wavelength of 5.7 mm and

; 5 even less so at shorter wavelengths.

In the external bend, as to be expected [118], the losses
prove to be much larger. They increase with increase in wavelength
and amount to 20 dB at A=3.9 mm and to 35 dB at A=5.7 mm.

Thus, the composite dielectric waveguide with heterogeneous
surrounding media actually has certaln advantages when compared
with the multilayer dielectric wavegulde in a homogeneous setting.
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DIELECTRIC WAVEGUIDE-BASED WAVE TYPE CONVERTER
A. N. Merkur'yev
Approach to Converter Analysis

As we know, when another single wavelength dilelectric waveguide
brought up to the wave fleld propagating along a first single wave-
length dielectric waveguide, energy branches from the first to the
second. Phenomena in this system can be described, with an accu-
racy sultable for a number of practical cases, with the theory of
bound waves [75]. It is shown in [76] that the level of energy
interchange between the dielectric waveguldes 1s determined by the
ratio 2c¢/Ay, where ¢ is the linear coupling coefficient (LC) between
the waves, and Ay 1s the difference of thelr constants of propaga-
tion. If Ay=0, there may be total branching of energy from the
initially excited dielectric wavegulide into the second wavegulde;
this will occur when

cL L] f’ ﬁ" ( ne q".:'vu)’ (l)
where L is the coupling section length. )

But 1if Ay#0 and 2¢/Ay<<l, as follows from [76,79], the frac-
tion of energy branching into the second dielectric wavegulde will
not exceed (2c/AY)2. This fact, first pointed out in [75] as applied
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to hollow metal waveguides, then can be used in converting the
principal wave of the single wavelength dielectric wavegulde,

for example, a multiwavelength dielectric wavegulde, 1n particular,
to an HOl wave of the circular dielectric wavegulde.

Analysis of phenomena in the system of coupled single
wavelength and multiwavelength dlelectric waveguides 1s hampered
by the fact that, since a single wavelength transmission line must
be brought into correspondence with each propagating wave type,
the number of differential equations in their system describing
the coupling of the dielectric waveguldes 1s relatively large,
so that numerical methods must be used in the solution. The ana-
lysis can be simplied with allowance for the fact that the wave
type converter must operate with minimum losses, that is, in it
there must be a substantial coupling of the wave from the single
wavelength dielectric waveguide only with a single wave type from
the multiwavelength dielectric waveguide; coupling with other wave
types, as an unwanted phenomenon degrading the device characteris-
tlcs, must be brought to a minimum.

Obviously, this can be achlieved by selecting the cross-sec-
tional dimensions and the dlelectric constant of the dielectric
wavegulde so that there 1s an equality of the constants of propa-
gatlon of the converted wave types, and by reducing the linear
coupling coefflecient; this requires making the distance between
the dielectric waveguldes quite large [77].

Further, to describe the phenomena in the dielectric wave-
gulde system we can use the approach presented, for example, in
{78], that is, we can simultaneously examine the coupling of only
two specified wave types without allowing for the transformation
into parasltic wave types, and the latter can be estimated by the
weak coupling method. To do this, the results obtained in [79] can
be used directly in calculating the converter characterlistics;
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this however presupposes a knowledge of the linear coupling coeffi-
cient. Since it 1s not possibie to calculate the linear coupling
coefficlents, we calculate them, more precisely, the linear coupling
coefficlents of the principal HEll wave of the PDV and the H01 wave
of the KDV, experimentally.

PDV

Measuring the Linear Coupling Coefficlents of Waves HE11 KDV

and HOl

The experimental estimate of the linear coupling coefficlents
is convenlently done by investigating the characteristics of an
adjustable converter mockup. The measurements were made according
to the diagram in Fig. 1. The converter I as such consists of a
XDV section 4.35 mm in diameter and a PDV section, with a cross
section of 2.90x1.45 mm2, parallel for a coupling section 280 mm
long. These measurements of the dlelectric waveguide sections
provide, as is clear from the dispersion curves in Fig. 4, an equa-
lity of delays £=A/Ab-l (Ab 1s the wavelength in the dielectric
wavegulide) for the waves HEigv in the wavelength band
Aks.l mm. In this case (see Fig. 2), in addition to the principal
wave HEII and the wave HOI’ two more wave types can be propagated
in the KDV: EOl and HE21. Coupling with the first of these, EOl’
is eliminated by selecting the mutual positioning of the dielec-
tric waveguldes such as in shown in the fileld in Fig. 3. 1In the
Fig. 1 diagram the reflection coefficlent of the converter 1is
measured (reflector 2 is connected to the KDV of this converter).
The following adjustments are possibled in the converter: varying
the distance t between the dielectric waveguides (see Fig. 3) and
shifting one dielectric wavegulde along the other with constant t.
Both adjustments were made without changing the length of the coup-
ling section.

As shown by the experiment, when one dlelectric waveguide 1s
shifted along the other, the reflection coefficient rapidly oscil-
lates; a slow aperiodic change 1s superimposed on the oscillatlon.
The latter is evidently caused by some disturbance in the parallelity
of the dlelectric waveguldes when they are shifted. Rapid
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oscillations are explained by the Interference in the detector of
two (or possibly several) reflected waves. It turned out that near

. A=5.1 mm, when t>2.5 mm, the period of oscillations corresponds to
" the delay of the H,; wave in the KDV. Therefore, in the converter
there must actually be the predominant coupling with the HOl wave
R : in the KDV, and the oscillations are caused by the interference
: of the wave with the variable phase reflected from the converter,
and the wave with a constant phase, caused by a nonideal matching
of the arrangement elements.

g e

Filg. 1
1. adjustable converter 6. attenuator
2. reflector 7. generator
3,4, tapers to the PDV from 8. recording micrcammeter
metal waveguldes 9. amplifier

5. bridge (3 dB) for the PDV

The reflection coefficient as functlons of the distance t
between the dlelectric waveguldes in accordance with [77] 1s
oscillatory. Applying the method given in [77], from these func-
tions we found the linear coupling coefficlents of the waves

HE igv and Hg?v, whose plots are shown in Fig. 3.
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Construction and Characteristics of Converter

Further s3tudy of a converter of HE??V and Hggv

was made with a nonadjustable mockup (see Fig. 2). In it use

was made of the dielectric waveguldes of the same transverse
dimensions and the same wavegulde positioning as in the adjustable
converter mockup. The dielectric waveguldes were mounted in foam
plastic supports. The ends of the dielectric waveguides were
smoothly diverted from each other.

wave types

KDV $485
C T Eep2s

' HE] £e231 |
- i

=======~-.4 PDV

4

-

=1
3

Fig. 4

In trying to attain small device dlmensions, we selected the
distance between dielectric waveguldes t=2 mm. Further, on the
basis of Fig. 3 and condition (1) for M=0, we found the length of
the coupling section, L=3%0 mm.

The shape of the PDV axls in the coupling section can be
modified somewhat with a tuning screw, attaining the maximum trans-

mission coefficient.

In tuning, the two converters were connected in a cascade
manner. By rotating the tuning screws, the minimum losses A
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was attained, defined as the ratio of the input signal strength to
the output signal strength. The plot of the minimum 1osses£lmin
for a single converter as a function of wavelength is presented

in Fig. 5. The quantity Amin has 1ts smallest value at Asi4.,7 mm,
and not at A=5.,1 mm, as would be expected on the basis of Fig. 4.

The concern evidently 1s that, for total interchange of energy, it

= -
Ay i T T—

is required to have an equality of velocities of propagation of
the coupled waves; this occurs at the point of the frequency scale
not coinciding with the equality point of the phase velocities of
the waves 1n the connected dlelectric waveguides; and it does so
the more strongly, the closer the coupled dielectric waveguides
are to each other.

0 N
v W . &{m

Filg. 5

When the frequency characteristic was being recorded, as before
the two converters were connected cascadewlse. The losses for a
single converter as a function of wavelength A(A) during the tuning
of the converters at xo=u.7 mm is shown in Fig. 6. In the region
A=4.25 mm we observed a second hump of the frejuency characteristic;
this apparently 1ls caused by the amplification of the coupling cf
the PDV wave HEll and of the KDV wave HEzl' The concern 1s that,
as shown experimentally, even at the wavelength 4.7 mm, the principal
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PDV wave is partially converted to an HE21 wave exlsting in the

KDV together with the HOl wave, and with a reduction in A , the
weakening of the coupling of the HEE?V wave with the Hggv wave
is partially compensated by an amplification of the coupling of

=2 PDV KDV
the HEll and the HE21

waves.

Thus, the minimum losses occur at the wavelength of 4.7 mm
and amount to 2 dB. In the wavelength band from 4.6 mm to 4.85 mm
the losses do nct exceed 3 dB. In this mockup, conversion of the

KDV HE wave to the parasitic type was noted. :
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